Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Res ; 33(8): 1913-22, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27091031

RESUMEN

PURPOSE: Busulfan-melphalan high-dose chemotherapy followed by autologous stem cell transplantation is an essential consolidation treatment of high-risk neuroblastoma in children. Main treatment limitation is hepatic veno-occlusive disease, the most severe and frequent extra-hematological toxicity. This life threatening toxicity has been related to a drug interaction between busulfan and melphalan which might be increased by prior disturbance of iron homeostasis, i.e. an increased plasma ferritin level. METHODS: We performed an experimental study of busulfan and melphalan pharmacodynamic and pharmacokinetics in iron overloaded mice. RESULTS: Iron excess dramatically increased the toxicity of melphalan or busulfan melphalan combination in mice but it did not modify the clearance of either busulfan or melphalan. We show that prior busulfan treatment impairs the clearance of melphalan. This clearance alteration was exacerbated in iron overloaded mice demonstrating a pharmacokinetic interaction. Additionally, iron overload increased melphalan toxicity without altering its pharmacokinetics, suggesting a pharmacodynamic interaction between iron and melphalan. Based on iron homeostasis disturbance, we postulated that prior induction of ferritin, through Nrf2 activation after oxidative stress, may be associated with the alteration of melphalan metabolism. CONCLUSION: Iron overload increases melphalan and busulfan-melphalan toxicity through a pharmacodynamic interaction and reveals a pharmacokinetic drug interaction between busulfan and melphalan.


Asunto(s)
Busulfano/metabolismo , Busulfano/toxicidad , Sobrecarga de Hierro/metabolismo , Melfalán/metabolismo , Melfalán/toxicidad , Animales , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/toxicidad , Interacciones Farmacológicas/fisiología , Sobrecarga de Hierro/patología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Hum Reprod ; 27(5): 1460-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22416012

RESUMEN

BACKGROUND: Kallmann syndrome (KS) is a genetic disorder associating pubertal failure with congenitally absent or impaired sense of smell. KS is related to defective neuronal development affecting both the migration of olfactory nerve endings and GnRH neurons. The discovery of several genetic mutations responsible for KS led to the identification of signaling pathways involved in these processes, but the mutations so far identified account for only 30% of cases of KS. Here, we attempted to identify new genes responsible for KS by using a pan-genomic approach. METHODS: From a cohort of 120 KS patients, we selected 48 propositi with no mutations in known KS genes. They were analyzed by comparative genomic hybridization array, using Agilent 105K oligonucleotide chips with a mean resolution of 50 kb. RESULTS: One propositus was found to have a heterozygous deletion of 213 kb at locus 7q21.11, confirmed by real-time qPCR, deleting 11 of the 17 SEMA3A exons. This deletion cosegregated in the propositus' family with the KS phenotype, that was transmitted in autosomal dominant fashion and was not associated with other neurological or non-neurological clinical disorders. SEMA3A codes for semaphorin 3A, a protein that interacts with neuropilins. Mice lacking semaphorin 3A expression have been showed to have a Kallmann-like phenotype. CONCLUSIONS: SEMA3A is therefore a new gene whose loss-of-function is involved in KS. These findings validate the specific role of semaphorin 3A in the development of the olfactory system and in neuronal control of puberty in humans.


Asunto(s)
Eliminación de Gen , Síndrome de Kallmann/genética , Semaforina-3A/genética , Femenino , Humanos , Masculino , Linaje , Fenotipo , Pubertad/genética , Pubertad/fisiología , Semaforina-3A/fisiología , Olfato/genética , Olfato/fisiología
3.
Am J Med Genet A ; 158A(7): 1633-40, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22678713

RESUMEN

Patients with a submicroscopic deletion at 1q43q44 present with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, and corpus callosum abnormalities. However, the precise relationship between most of deleted genes and the clinical features in these patients still remains unclear. We studied 11 unrelated patients with 1q44 microdeletion. We showed that the deletions occurred de novo in all patients for whom both parents' DNA was available (10/11). All patients presented with moderate to severe ID, seizures and non-specific craniofacial anomalies. By oligoarray-based comparative genomic hybridization (aCGH) covering the 1q44 region at a high resolution, we obtained a critical deleted region containing two coding genes-HNRNPU and FAM36A-and one non-coding gene-NCRNA00201. All three genes were expressed in different normal human tissues, including in human brain, with highest expression levels in the cerebellum. Mutational screening of the HNRNPU and FAM36A genes in 191 patients with unexplained isolated ID did not reveal any deleterious mutations while the NCRNA00201 non-coding gene was not analyzed. Nine of the 11 patients did not present with microcephaly or corpus callosum abnormalities and carried a small deletion containing HNRNPU, FAM36A, and NCRNA00201 but not AKT3 and ZNF238, two centromeric genes. These results suggest that HNRNPU, FAM36A, and NCRNA00201 are not major genes for microcephaly and corpus callosum abnormalities but are good candidates for ID and seizures.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 1 , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Discapacidad Intelectual/genética , ARN no Traducido/genética , Convulsiones/genética , Preescolar , Hibridación Genómica Comparativa , Facies , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Cariotipificación , Masculino , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA