RESUMEN
It is widely accepted that some types of learning involve structural and functional changes of hippocampal synapses. Cell adhesion molecules neural cell adhesion molecule (NCAM), its polysialylated form polysialic acid to NCAM (PSA-NCAM), and L1 are prominent modulators of those changes. On the other hand, trace eyeblink conditioning, an associative motor learning task, requires the active participation of hippocampal circuits. However, the involvement of NCAM, PSA-NCAM, and L1 in this type of learning is not fully known. Here, we aimed to investigate the possible time sequence modifications of such neural cell adhesion molecules in the hippocampus during the acquisition of a trace eyeblink conditioning. To do so, the hippocampal expression of NCAM, PSA-NCAM, and L1 was assessed at three different time points during conditioning: after one (initial acquisition), three (partial acquisition), and six (complete acquisition) sessions of the conditioning paradigm. The conditioned stimulus (CS) was a weak electrical pulse separated by a 250-ms time interval from the unconditioned stimuli (US, a strong electrical pulse). An acquisition-dependent regulation of these adhesion molecules was found in the hippocampus. During the initial acquisition of the conditioning eyeblink paradigm (12 h after 1 and 3 days of training), synaptic expression of L1 and PSA-NCAM was transiently increased in the contralateral hippocampus to the paired CS-US presentations, whereas, when the associative learning was completed, such increase disappeared, but a marked and bilateral upregulation of NCAM was found. In conclusion, our findings show a specific temporal pattern of hippocampal CAMs expression during the acquisition process, highlighting the relevance of NCAM, PSA-NCAM, and L1 as learning-modulated molecules critically involved in remodeling processes underlying associative motor-memories formation.
RESUMEN
Evidence shows that altered retinoic acid signaling may contribute to the pathogenesis and pathophysiology of Parkinson's disease (PD). Retinoic acid is the bioactive derivative of the lipophilic vitamin A. Vitamin A is involved in several important homeostatic processes, such as cell differentiation, antioxidant activity, inflammation and neuronal plasticity. The role of vitamin A and its derivatives in the pathogenesis and pathophysiology of neurodegenerative diseases, and their potential as therapeutics, has drawn attention for more than 10 years. However, the literature sits in disparate fields. Vitamin A could act at the crossroad of multiple environmental and genetic factors of PD. The purpose of this review is to outline what is known about the role of vitamin A metabolism in the pathogenesis and pathophysiology of PD. We examine key biological systems and mechanisms that are under the control of vitamin A and its derivatives, which are (or could be) exploited for therapeutic potential in PD: the survival of dopaminergic neurons, oxidative stress, neuroinflammation, circadian rhythms, homeostasis of the enteric nervous system, and hormonal systems. We focus on the pivotal role of ALDH1A1, an enzyme expressed by dopaminergic neurons for the detoxification of these neurons, which is under the control of retinoic acid. By providing an integrated summary, this review will guide future studies on the potential role of vitamin A in the management of symptoms, health and wellbeing for PD patients.
Asunto(s)
Enfermedad de Parkinson , Vitamina A , Neuronas Dopaminérgicas , Humanos , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/tratamiento farmacológico , TretinoinaRESUMEN
Dietary micronutrients constitute a major environmental factor influencing aging processes. Vitamin A (vit. A) is the precursor of retinoic acid, a bioactive molecule that controls the expression of several genes involved in brain function. Evidence suggests a reduction of vit. A bioavailability with aging, but its impact on neuronal network is poorly understood. We investigated the mechanisms linking memory impairments with specific alterations of retinoic acid metabolism in the hippocampus. We compared young (10 weeks) and aged (16 months) rats, supplemented or not with dietary vit. A (20 IU retinol/g) for 4 weeks. Our study reveals that aging induced dysregulation of gene expression involved in vit. A and retinoic acid metabolism in the liver. Furthermore, vit. A supplementation restored the integrity of the hippocampal neuronal morphology altered by aging. Importantly, we found a high correlation between hippocampal levels of retinoic acid and memory performance. The present work establishes the link between collapse of retinoid metabolism and age-related cognitive decline, highlighting the role of vit. A in maintaining memory through aging.
Asunto(s)
Envejecimiento , Hipocampo/metabolismo , Trastornos de la Memoria/etiología , Memoria , Tretinoina/metabolismo , Animales , Expresión Génica/efectos de los fármacos , Ratas Wistar , Tretinoina/farmacología , Tretinoina/fisiologíaRESUMEN
Vitamin A and its active metabolite, retinoic acid (RA), play a key role in the maintenance of cognitive functions in the adult brain. Depletion of RA using the vitamin A deficiency (VAD) model in Wistar rats leads to spatial memory deficits in relation to elevated intrahippocampal basal corticosterone (CORT) levels and increased hippocampal 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activity. All of these effects are normalised by vitamin A supplementation. However, it is unknown whether vitamin A status also modulates contextual fear conditioning (CFC) in a glucocorticoid-associated fear memory task dependent on the functional integrity of the hippocampus. In the present study, we investigated the impact of VAD and vitamin A supplementation in adult male rats on fear memory processing, plasma CORT levels, hippocampal retinoid receptors and 11ß-HSD1 expression following a novelty-induced stress. We also examined whether vitamin A supplementation or a single injection of UE2316, a selective 11ß-HSD1 inhibitor, known to modulate local glucocorticoid levels, had any beneficial effects on contextual fear memory and biochemical parameters in VAD rats. We provide evidence that VAD rats exhibit a decreased fear conditioning response during training with a poor contextual fear memory 24 hours later. These VAD-induced cognitive impairments are associated with elevated plasma CORT levels under basal conditions, as well as following a stressful event, with saturated CORT release, altered hippocampal retinoid receptors and 11ß-HSD1 expression. Vitamin A supplementation normalises VAD-induced fear conditioning training deficits and all biochemical effects, although it cannot prevent fear memory deficits. Moreover, a single injection of UE2316 not only impairs contextual fear memory, but also reduces plasma CORT levels, regardless of the vitamin A status and decreases slightly hippocampal 11ß-HSD1 activity in VAD rats following stress. The present study highlights the importance of vitamin A status with respect to modulating fear memory conditioning in relation to plasma CORT levels and hippocampal 11ß-HSD1.
Asunto(s)
Miedo , Glucocorticoides/metabolismo , Trastornos de la Memoria/etiología , Deficiencia de Vitamina A/complicaciones , Deficiencia de Vitamina A/psicología , Animales , Cognición/efectos de los fármacos , Cognición/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Corticosterona/sangre , Suplementos Dietéticos , Miedo/efectos de los fármacos , Miedo/psicología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/sangre , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Estrés Psicológico , Vitamina A/farmacología , Vitamina A/uso terapéutico , Deficiencia de Vitamina A/dietoterapia , Deficiencia de Vitamina A/patologíaRESUMEN
The diagnosis of Type 1 Diabetes (T1D) in ever younger children led us to question the impact of insulin deficiency or chronic hyperglycemia on cerebral development and memory performances. Here, we sought abnormalities in these traits in a model of streptozotocin-induced diabetes in juvenile rats treated or not by insulin. We made the assumption that such alterations would be related, at least in part, to excessive glucocorticoid exposition in hippocampal neurons. We have compared 3 groups of juvenile rats: controls, untreated diabetics and insulin-treated diabetics. Diabetes was induced by streptozotocin (65â¯mg/kg IP/day, 2 consecutive days), at postnatal days 21 and 22 and a subcutaneous pellet delivering 2â¯U of insulin/day was implanted in treated diabetic rats 3â¯days later. Three weeks after diabetes induction, cognitive performances (Y maze, object location and recognition tests), in vivo brain structure (brain volume and water diffusion by structural magnetic resonance imaging), and hippocampal neurogenesis (immunohistochemical labeling) measurements were undertaken. Corticosterone levels were evaluated in plasma under basal and stress conditions, and within hippocampus together with 11ß-dehydrocorticosterone to assess 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activity. The comparison of the three experimental groups revealed that, compared to controls, untreated diabetic rats showed decreased cognitive performances in Y-maze and object location test (pâ¯<â¯0.05), decreased brain and hippocampal microstructure (pâ¯<â¯0.05), and decreased maturation and survival of hippocampal newborn neurons (pâ¯<â¯0.05). These alterations were associated with increased plasma corticosterone at the baseline nadir of its secretion (pâ¯<â¯0.001) and during the recovery phase following a restraint stress (pâ¯<â¯0.001), as well as increased hippocampal corticosterone levels (pâ¯<â¯0.01) and 11ß-HSD1 activity (pâ¯<â¯0.05). As untreated diabetic rats, insulin-treated diabetic rats displayed decreased brain volume and water diffusion (pâ¯<â¯0.05 compared to controls) and intermediate memory performances and hippocampal neurogenesis (p value not significant compared to either controls or untreated diabetics). Moreover, they were similar to controls for basal plasma and hippocampal corticosterone and 11ß-HSD1 activity but show increased plasma corticosterone during the recovery phase following a restraint stress similar to untreated diabetics (pâ¯<â¯0.001 compared to controls). Thus, insulin did not completely prevent several hippocampal-dependent behavioral and structural alterations induced by diabetes in juvenile rats which may relate to the higher cognitive difficulties encountered in T1D children compared to non-diabetic controls. Although insulin restored basal corticosterone and 11ß-HSD1 activity (in hippocampus and plasma), the negative feedback regulation of corticosterone secretion after stress was still impaired in insulin-treated diabetic rats. Further characterization of insulin control on glucocorticoid regulation and availability within hippocampus is awaited.
Asunto(s)
Disfunción Cognitiva/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Insulina/uso terapéutico , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Cognición/fisiología , Corticosterona/análisis , Corticosterona/sangre , Modelos Animales de Enfermedad , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Insulina/metabolismo , Masculino , Memoria/fisiología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Lóbulo Temporal/metabolismoRESUMEN
We explored here the possibility that mid-life stress in rats could have deleterious effects on cognitive abilities during early aging, as well as the potential role of inter-individual differences on the development of such effects. Male Wistar rats were classified according to their reactivity to novelty (4 months old) as highly (HR) or low (LR) reactive and, at mid-life (12 months old), either submitted to chronic stress (28 days) or left undisturbed. At early aging (18 months old), their learning abilities were tested in the water maze, and a number of neuroendocrine (plasma corticosterone; hippocampal corticosteroid receptors) and neurobiological (hippocampal expression of neuronal cell adhesion molecules) parameters were evaluated. Impaired performance was observed in stressed HR rats, as compared to unstressed HR and stressed LR rats. Increased hippocampal mineralocorticoid receptors were found in stressed LR rats when compared with stressed HR and control LR groups. In addition, mid-life stress-induced an increased corticosterone response and a reduction in NCAM-180 isoform and L1 regardless of the behavioral trait of novelty reactivity. These findings highlight a role of stress experienced throughout life on cognitive impairment occurring during the early aging period, as well as the importance of taking into account individual differences to understand variability in such cognitive decline.
Asunto(s)
Envejecimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Hipocampo/fisiopatología , Aprendizaje , Proteínas del Tejido Nervioso/metabolismo , Estrés Fisiológico/fisiopatología , Adaptación Fisiológica , Animales , Masculino , Ratas , Ratas WistarRESUMEN
BACKGROUND: There is an extensive literature describing how stress disturbs cognitive processing and can exacerbate psychiatric disorders. There is, however, an insufficient understanding of the molecular mechanisms involved in stress effects on brain and behavior. METHODS: Rats were given spatial memory training in a hippocampus-dependent water maze task. We investigated how a fear-provoking experience (predator exposure) would affect their spatial memory and neural cell adhesion molecule (NCAM) levels in the hippocampus, prefrontal cortex (PFC), amygdala, and cerebellum. RESULTS: Whereas the control (nonstress) group exhibited excellent memory for the hidden platform location in the water maze, the cat-exposed (stress) group exhibited a profound impairment of memory and a marked suppression of levels of the NCAM-180 isoform in the hippocampus. Predator stress produced a more global reduction of NCAM levels in the PFC but had no effect on NCAM levels in the amygdala and cerebellum. CONCLUSIONS: This work provides a novel perspective into dynamic and structure-specific changes in the molecular events involved in learning, memory, and stress. The selective suppression of NCAM-180 in the hippocampus and the more general suppression of NCAM in the PFC provide insight into the mechanisms underlying the great sensitivity of these two structures to be disturbed by stress.
Asunto(s)
Hipocampo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Corteza Prefrontal/metabolismo , Percepción Espacial/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Animales , Western Blotting , Química Encefálica/fisiología , Gatos , Corticosterona/sangre , Miedo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
Several behavioral and electrophysiological studies have suggested that a sustained activation of protein kinase C would be required to underlie persistent changes associated with memory formation. Limited proteolysis of PKCs by calpains, calcium-activated proteases, cleaves the catalytic and the regulatory domains, generating a free catalytic fragment termed PKM, constitutively active. In order to investigate the potential physiological importance of this limited proteolysis as a mechanism of PKC activation, we have studied the effect of the calpastatin peptide, a specific calpain inhibitor, on the learning of a spatial discrimination task in a radial maze. Thus, using osmotic micro-pumps, the calpastatin peptide was infused bilaterally into the dorsal hippocampus during the six sessions of training and the probe test. The treatment was shown to facilitate the performance of the mice on the two last training sessions and on the probe test. This behavioral effect was shown to correspond to the reduced calpain activity observed in the hippocampus at the very end of the 7-day infusion of the calpastatin peptide, suggesting a relation between both events. In addition, PKC activity measured immediately after the probe test was notably decreased in the membrane fraction of the hippocampus. Although protein levels of PKCs and calpains quantified by western blot were not affected by calpastatin infusion, we found a noticeable correlation between mu-calpain and PKCgamma levels confirming the particular relationship between both proteins. These results suggest that calpains influence on PKCs activity may affect cellular mechanisms during memory processes.
Asunto(s)
Calpaína/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Aprendizaje Discriminativo/efectos de los fármacos , Hipocampo/enzimología , Proteína Quinasa C/metabolismo , Percepción Espacial/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/administración & dosificación , Proteínas de Unión al Calcio/farmacología , Calpaína/metabolismo , Membrana Celular/enzimología , Membrana Celular/metabolismo , Inhibidores de Cisteína Proteinasa/administración & dosificación , Citosol/enzimología , Citosol/metabolismo , Implantes de Medicamentos , Habituación Psicofisiológica/fisiología , Hipocampo/efectos de los fármacos , Immunoblotting , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismoRESUMEN
It is now established that vitamin A and its derivatives, retinoic acid (RA), are required for cognitive functions in adulthood. RA hyposignaling and hyperactivity of glucocorticoid (GC) pathway appear concomitantly during aging and would contribute to the deterioration of hippocampal synaptic plasticity and functions. Furthermore, recent data have evidenced counteracting effects of retinoids on GC signaling pathway. In the present study, we addressed the following issue: whether the stimulation of RA pathway could modulate intrahippocampal corticosterone (CORT) levels in middle-aged mice and thereby impact on hippocampal plasticity and cognitive functions. We firstly investigated the effects of vitamin A supplementation and RA treatment in middle-aged mice, on contextual serial discrimination task, a paradigm which allows the detection of early signs of age-related hippocampal-dependent memory dysfunction. We then measured intrahippocampal CORT concentrations by microdialysis before and after a novelty-induced stress. Our results show that both RA treatment and vitamin A supplementation improve "episodic-like" memory in middle-aged mice but RA treatment appears to be more efficient. Moreover, we show that the beneficial effect of RA on memory is associated to an increase in hippocampal PSD-95 expression. In addition, intrahippocampal CORT levels are reduced after novelty-induced stress in RA-treated animals. This effect cannot be related to a modulation of hippocampal 11ß-HSD1 expression. Interestingly, RA treatment induces a modulation of RA receptors RARα and RARß expression in middle-aged mice, a finding which has been correlated with the amplitude of intrahippocampal CORT levels after novelty-induced stress. Taken together, our results suggest that the preventive action of RA treatment on age-related memory deficits in middle-aged mice could be, at least in part, due to an inhibitory effect of retinoids on GC activity.
RESUMEN
A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs) occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11ß-HSD1) activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11ß-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.
RESUMEN
Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions.
Asunto(s)
Hipocampo/efectos de los fármacos , Trastornos de la Memoria/prevención & control , Neurogénesis/efectos de los fármacos , Receptores de Ácido Retinoico/metabolismo , Vitamina A/administración & dosificación , Envejecimiento/efectos de los fármacos , Animales , Proliferación Celular , Supervivencia Celular , Suplementos Dietéticos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Wistar , Receptores de Ácido Retinoico/genética , Vitamina A/farmacocinéticaRESUMEN
A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function.
Asunto(s)
Hipocampo/patología , Trastornos de la Memoria/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Tretinoina/uso terapéutico , Deficiencia de Vitamina A/complicaciones , Animales , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/etiología , Ratas , Receptor trkA/genética , Regeneración , Resultado del Tratamiento , Tretinoina/farmacología , Regulación hacia Arriba , Deficiencia de Vitamina A/tratamiento farmacológicoRESUMEN
Memory formation has been associated with structural and functional modifications of synapses. Cell adhesion molecules are prominent modulators of synaptic plasticity. Here, we investigated the involvement of the cell adhesion molecules, NCAM, its polysialylated state (PSA-NCAM) and L1 in spatial learning-induced synaptic remodeling and memory storage. A differential regulation of these adhesion molecules was found in the hippocampus of rats submitted to one training session in the spatial, but not cued, version of the Morris water maze. Twenty-four hours after training, synaptic expression of NCAM and PSA-NCAM was increased, whereas L1 appeared markedly decreased. The regulation of these molecules was spatial learning-specific, except for L1 reduction, which could be attributed to swimming under stressful conditions rather than to learning. Subsequent psychopharmacological experiments were performed to address the functional role of NCAM and PSA-NCAM in the formation of spatial memories. Rats received an intracerebroventricular injection of either a synthetic peptide (C3d) aimed to interfere with NCAM function, or endoneuraminidase, an enzyme that cleaves polysialic acid from NCAM. Both treatments affected acquisition of spatial information and lead to impaired spatial memory abilities, supporting a critical role of the observed learning-induced up-regulation of synaptic NCAM expression and polysialylation on spatial learning and memory. Therefore, our findings highlight NCAM as a learning-modulated molecule critically involved in the hippocampal remodeling processes underlying spatial memory formation.