Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 32(2): 352-373, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31748328

RESUMEN

Translational control is a widespread mechanism that allows the cell to rapidly modulate gene expression in order to provide flexibility and adaptability to eukaryotic organisms. We applied translating ribosome affinity purification combined with RNA sequencing to characterize translational regulation of mRNAs at early stages of the nitrogen-fixing symbiosis established between Medicago truncatula and Sinorhizobium meliloti Our analysis revealed a poor correlation between transcriptional and translational changes and identified hundreds of regulated protein-coding and long noncoding RNAs (lncRNAs), some of which are regulated in specific cell types. We demonstrated that a short variant of the lncRNA Trans-acting small interference RNA3 (TAS3) increased its association to the translational machinery in response to rhizobia. Functional analysis revealed that this short variant of TAS3 might act as a target mimic that captures microRNA390, contributing to reduce trans acting small interference Auxin Response Factor production and modulating nodule formation and rhizobial infection. The analysis of alternative transcript variants identified a translationally upregulated mRNA encoding subunit 3 of the SUPERKILLER complex (SKI3), which participates in mRNA decay. Knockdown of SKI3 decreased nodule initiation and development, as well as the survival of bacteria within nodules. Our results highlight the importance of translational control and mRNA decay pathways for the successful establishment of the nitrogen-fixing symbiosis.


Asunto(s)
Reprogramación Celular/fisiología , Fijación del Nitrógeno/fisiología , Raíces de Plantas/metabolismo , Polirribosomas/metabolismo , ARN de Planta/metabolismo , ARN no Traducido/metabolismo , Simbiosis/fisiología , Reprogramación Celular/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/genética , ARN de Planta/genética , ARN no Traducido/genética , Nódulos de las Raíces de las Plantas , Sinorhizobium meliloti/metabolismo , Simbiosis/genética
2.
Proc Biol Sci ; 289(1978): 20220710, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858060

RESUMEN

Visual complexity is ubiquitous in nature. Drivers of complexity include selection in coevolutionary arms races between antagonists. However, the causes and consequences of biological complexity and its perception are largely understudied, partly because complexity is difficult to quantify. Here, we address this by studying egg pattern complexity and its perception in hosts (tawny-flanked prinia Prinia subflava), which visually recognize and reject mimetic eggs of their virulent brood parasite (cuckoo finch Anomalospiza imberbis). Using field data and an optimization algorithm, we compute a complexity metric which predicts rejection of experimentally placed conspecific eggs in prinia nests. Real cuckoo finch eggs exhibit significantly lower pattern complexity than prinia eggs, suggesting that high complexity benefits hosts because it distinguishes host eggs from parasitic eggs. We show that prinias perceive complexity differences according to Weber's law of proportional processing (i.e. relative, rather than absolute, differences between stimuli are processed in discrimination, such that two eggs with simple patterns are more easily discriminable than two with complex patterns). This may influence coevolutionary trajectories of hosts and parasites. The new methods presented for quantifying complexity and its perception can help us to understand selection pressures driving the evolution of complexity and its consequences for species interactions.


Asunto(s)
Pinzones , Parásitos , Gorriones , Animales , Evolución Biológica , Interacciones Huésped-Parásitos , Comportamiento de Nidificación , Óvulo
3.
Mol Biol Evol ; 36(11): 2572-2590, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31350563

RESUMEN

The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacterial populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here, we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated 12 major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of 11 populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation.

4.
Plant J ; 89(4): 789-804, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862469

RESUMEN

The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue-specific RNA-Seq libraries from 113 datasets and constructed 48 359 transcript models of protein-coding genes in eleven tissues. In addition, we annotated various classes of non-coding RNA including microRNA, long intergenic RNA, small nucleolar RNA, natural antisense transcript, small nuclear RNA, and small RNA using published datasets and in-house analytic results. Altogether, we identified 635 novel protein-coding genes, 508 novel transcribed regions, 5178 non-coding RNAs, and 35 846 small RNA loci that were formerly unannotated. Analysis of the splicing events and RNA-Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , ARN de Planta/genética , Transcriptoma/genética
6.
Plant Cell Physiol ; 58(1): e4, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013278

RESUMEN

ThaleMine (https://apps.araport.org/thalemine/) is a comprehensive data warehouse that integrates a wide array of genomic information of the model plant Arabidopsis thaliana. The data collection currently includes the latest structural and functional annotation from the Araport11 update, the Col-0 genome sequence, RNA-seq and array expression, co-expression, protein interactions, homologs, pathways, publications, alleles, germplasm and phenotypes. The data are collected from a wide variety of public resources. Users can browse gene-specific data through Gene Report pages, identify and create gene lists based on experiments or indexed keywords, and run GO enrichment analysis to investigate the biological significance of selected gene sets. Developed by the Arabidopsis Information Portal project (Araport, https://www.araport.org/), ThaleMine uses the InterMine software framework, which builds well-structured data, and provides powerful data query and analysis functionality. The warehoused data can be accessed by users via graphical interfaces, as well as programmatically via web-services. Here we describe recent developments in ThaleMine including new features and extensions, and discuss future improvements. InterMine has been broadly adopted by the model organism research community including nematode, rat, mouse, zebrafish, budding yeast, the modENCODE project, as well as being used for human data. ThaleMine is the first InterMine developed for a plant model. As additional new plant InterMines are developed by the legume and other plant research communities, the potential of cross-organism integrative data analysis will be further enabled.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Arabidopsis/metabolismo , Biología Computacional/métodos , Ontología de Genes , Genómica/métodos , Almacenamiento y Recuperación de la Información/métodos , Internet , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
7.
Plant Cell ; 26(5): 1925-1937, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876251

RESUMEN

Polyploidization events are frequent among flowering plants, and the duplicate genes produced via such events contribute significantly to plant evolution. We sequenced the genome of wild radish (Raphanus raphanistrum), a Brassicaceae species that experienced a whole-genome triplication event prior to diverging from Brassica rapa. Despite substantial gene gains in these two species compared with Arabidopsis thaliana and Arabidopsis lyrata, ∼70% of the orthologous groups experienced gene losses in R. raphanistrum and B. rapa, with most of the losses occurring prior to their divergence. The retained duplicates show substantial divergence in sequence and expression. Based on comparison of A. thaliana and R. raphanistrum ortholog floral expression levels, retained radish duplicates diverged primarily via maintenance of ancestral expression level in one copy and reduction of expression level in others. In addition, retained duplicates differed significantly from genes that reverted to singleton state in function, sequence composition, expression patterns, network connectivity, and rates of evolution. Using these properties, we established a statistical learning model for predicting whether a duplicate would be retained postpolyploidization. Overall, our study provides new insights into the processes of plant duplicate loss, retention, and functional divergence and highlights the need for further understanding factors controlling duplicate gene fate.

8.
Nucleic Acids Res ; 43(Database issue): D1003-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25414324

RESUMEN

The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release 'modules' that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts 'science apps,' developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community.


Asunto(s)
Arabidopsis/genética , Bases de Datos Genéticas , Genoma de Planta , Minería de Datos , Internet , Programas Informáticos
9.
BMC Bioinformatics ; 17(Suppl 19): 511, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28155722

RESUMEN

BACKGROUND: Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes. Monogenean parasites have attachment appendages at their haptoral regions that help them to move about the body surface and feed on skin and gill debris. Haptoral attachment organs consist of sclerotized hard parts such as hooks, anchors and marginal hooks. Monogenean species are differentiated based on their haptoral bars, anchors, marginal hooks, reproductive parts' (male and female copulatory organs) morphological characters and soft anatomical parts. The complex structure of these diagnostic organs and also their overlapping in microscopic digital images are impediments for developing fully automated identification system for monogeneans (LNCS 7666:256-263, 2012), (ISDA; 457-462, 2011), (J Zoolog Syst Evol Res 52(2): 95-99. 2013;). In this study images of hard parts of the haptoral organs such as bars and anchors are used to develop a fully automated identification technique for monogenean species identification by implementing image processing techniques and machine learning methods. RESULT: Images of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is used for validation of our system and the accuracy is 91.25%. CONCLUSIONS: The methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the monogenean images will be reduced and improvements in extraction and selection of features will be implemented.


Asunto(s)
Diagnóstico por Computador/métodos , Peces/parasitología , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Platelmintos/fisiología , Animales , Análisis por Conglomerados , Branquias/parasitología , Piel/parasitología
10.
Plant Cell Physiol ; 56(1): e1, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25432968

RESUMEN

Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. J. Craig Venter Institute (JCVI; formerly TIGR) has been involved in M. truncatula genome sequencing and annotation since 2002 and has maintained a web-based resource providing data to the community for this entire period. The website (http://www.MedicagoGenome.org) has seen major updates in the past year, where it currently hosts the latest version of the genome (Mt4.0), associated data and legacy project information, presented to users via a rich set of open-source tools. A JBrowse-based genome browser interface exposes tracks for visualization. Mutant gene symbols originally assembled and curated by the Frugoli lab are now hosted at JCVI and tie into our community annotation interface, Medicago EuCAP (to be integrated soon with our implementation of WebApollo). Literature pertinent to M. truncatula is indexed and made searchable via the Textpresso search engine. The site also implements MedicMine, an instance of InterMine that offers interconnectivity with other plant 'mines' such as ThaleMine and PhytoMine, and other model organism databases (MODs). In addition to these new features, we continue to provide keyword- and locus identifier-based searches served via a Chado-backed Tripal Instance, a BLAST search interface and bulk downloads of data sets from the iPlant Data Store (iDS). Finally, we maintain an E-mail helpdesk, facilitated by a JIRA issue tracking system, where we receive and respond to questions about the website and requests for specific data sets from the community.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Genoma de Planta/genética , Medicago truncatula/genética , Interfaz Usuario-Computador , Almacenamiento y Recuperación de la Información , Internet
11.
BMC Genomics ; 15: 312, 2014 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-24767513

RESUMEN

BACKGROUND: Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome published in 2011. RESULTS: Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning 390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules, with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0 which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes have been deprecated to an "unsupported" status and 4% are absent from the Mt4.0 predictions. CONCLUSIONS: Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated gene models of Medicago will serve as a better reference for legume biology and comparative genomics.


Asunto(s)
Genoma de Planta , Medicago truncatula/genética , Cromosomas Artificiales Bacterianos
12.
J Gen Virol ; 95(Pt 4): 836-848, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24394697

RESUMEN

From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Children's Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4-15.6 % of all samples tested during the months of peak activity. A total of 79 (0.5 % prevalence) specimens were positive for human betacoronavirus HKU1 RNA. Genotypes HKU1 A and B were both isolated from clinical specimens and propagated on primary human tracheal-bronchial epithelial cells cultured at the air-liquid interface and were neutralized in vitro by human intravenous immunoglobulin and by polyclonal rabbit antibodies to the spike glycoprotein of HKU1. Phylogenetic analysis of the deduced amino acid sequences of seven full-length genomes of Colorado HKU1 viruses and the spike glycoproteins from four additional HKU1 viruses from Colorado and three from Brazil demonstrated remarkable conservation of these sequences with genotypes circulating in Hong Kong and France. Within genotype A, all but one of the Colorado HKU1 sequences formed a unique subclade defined by three amino acid substitutions (W197F, F613Y and S752F) in the spike glycoprotein and exhibited a unique signature in the acidic tandem repeat in the N-terminal region of the nsp3 subdomain. Elucidating the function of and mechanisms responsible for the formation of these varying tandem repeats will increase our understanding of the replication process and pathogenicity of HKU1 and potentially of other coronaviruses.


Asunto(s)
Infecciones por Coronaviridae/epidemiología , Infecciones por Coronaviridae/virología , Coronaviridae/clasificación , Coronaviridae/aislamiento & purificación , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células Cultivadas , Análisis por Conglomerados , Colorado , Coronaviridae/genética , Genotipo , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Cultivo de Virus
13.
Evolution ; 77(10): 2224-2233, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37482374

RESUMEN

What makes a perfect signature? Optimal signatures should be consistent within individuals and distinctive between individuals. In defense against avian brood parasitism, some host species have evolved "signatures" of identity on their eggs, comprising interindividual variation in color and pattern. Tawny-flanked prinia (Prinia subflava) egg signatures facilitate recognition and rejection of parasitic cuckoo finch (Anomalospiza imberbis) eggs. Here, we show that consistency and distinctiveness of patterns are negatively correlated in prinia eggs, perhaps because non-random, repeatable pattern generation mechanisms increase consistency but limit distinctiveness. We hypothesize that pattern properties which are repeatable within individuals but random between individuals ("invariant properties") allow hosts to circumvent this trade-off. To find invariant properties, we develop a method to quantify entire egg phenotypes from images taken from different perspectives. We find that marking scale (a fine-grained measure of size), but not marking orientation or position, is an invariant property in prinias. Hosts should therefore use differences in marking scale in egg recognition, but instead field experiments show that these differences do not predict rejection of conspecific eggs by prinias. Overall, we show that invariant properties allow consistency and distinctiveness to coexist, yet receiver behavior is not optimally tuned to make use of this information.

14.
Nat Ecol Evol ; 7(12): 1978-1982, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37872417

RESUMEN

We studied a brood parasite-host system (the cuckoo finch Anomalospiza imberbis and its host, the tawny-flanked prinia Prinia subflava) to test (1) the fundamental hypothesis that deceptive mimics evolve to resemble models, selecting in turn for models to evolve away from mimics ('chase-away evolution') and (2) whether such reciprocal evolution maintains imperfect mimicry over time. Over only 50 years, parasites evolved towards hosts and hosts evolved away from parasites, resulting in no detectible increase in mimetic fidelity. Our results reflect rapid adaptive evolution in wild populations of models and mimics and show that chase-away evolution in models can counteract even rapid evolution of mimics, resulting in the persistence of imperfect mimicry.


Asunto(s)
Pinzones , Parásitos , Gorriones , Animales , Evolución Biológica
15.
Mol Plant Microbe Interact ; 25(8): 1118-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22550957

RESUMEN

Defensins are a class of small and diverse cysteine-rich proteins found in plants, insects, and vertebrates, which share a common tertiary structure and usually exert broad-spectrum antimicrobial activities. We used a bioinformatic approach to scan the Vitis vinifera genome and identified 79 defensin-like sequences (DEFL) corresponding to 46 genes and allelic variants, plus 33 pseudogenes and gene fragments. Expansion and diversification of grapevine DEFL has occurred after the split from the last common ancestor with the genera Medicago and Arabidopsis. Grapevine DEFL localization on the 'Pinot Noir' genome revealed the presence of several clusters likely evolved through local duplications. By sequencing reverse-transcription polymerase chain reaction products, we could demonstrate the expression of grapevine DEFL with no previously reported record of expression. Many of these genes are predominantly or exclusively expressed in tissues linked to plant reproduction, consistent with findings in other plant species, and some of them accumulated at fruit ripening. The transcripts of five DEFL were also significantly upregulated in tissues infected with Botrytis cinerea, a necrotrophic mold, suggesting a role of these genes in defense against this pathogen. Finally, three novel defensins were discovered among the identified DEFL. They inhibit B. cinerea conidia germination when expressed as recombinant proteins.


Asunto(s)
Defensinas/genética , Familia de Multigenes , Vitis/genética , Secuencia de Aminoácidos , Botrytis/patogenicidad , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vitis/microbiología
16.
BMC Genomics ; 13: 368, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22857610

RESUMEN

BACKGROUND: Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. RESULTS: A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. CONCLUSIONS: The inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.


Asunto(s)
Glycine max/metabolismo , Proteínas de Plantas/genética , Alelos , Animales , Secuencia de Bases , Muerte Súbita , Femenino , Genes de Plantas , Sitios Genéticos , Pleiotropía Genética , Genotipo , Datos de Secuencia Molecular , Nematodos/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética , Glycine max/genética , Glycine max/crecimiento & desarrollo , Síndrome , Transgenes
17.
J Gen Virol ; 93(Pt 11): 2387-2398, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22837419

RESUMEN

This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1-600, aa 1-200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world.


Asunto(s)
Coronavirus Humano NL63/genética , Variación Genética , Genotipo , Glicoproteínas de Membrana/genética , Recombinación Genética , Proteínas del Envoltorio Viral/genética , Adolescente , Niño , Preescolar , Colorado/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Femenino , Genoma Viral , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Glicoproteína de la Espiga del Coronavirus , Factores de Tiempo
18.
Theor Appl Genet ; 124(4): 685-95, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22069119

RESUMEN

The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties. Two cDNA libraries were developed: one from root tissue (CASR), the other from leaf, stem and stem meristem tissue (CASL). Sequencing generated 706 contigs and 3,430 singletons. These sequences were combined with those from two other EST sequencing initiatives and filtered based on the sequence quality. Quality sequences were aligned using CAP3 and embedded in a Windows browser called HarvEST:Cassava which is made available. HarvEST:Cassava consists of a Unigene set of 22,903 quality sequences. A total of 2,954 putative SNPs were identified. Of these 1,536 SNPs from 1,170 contigs and 53 cassava genotypes were selected for SNP validation using Illumina's GoldenGate assay. As a result 1,190 SNPs were validated technically and biologically. The location of validated SNPs on scaffolds of the cassava genome sequence (v.4.1) is provided. A diversity assessment of 53 cassava varieties reveals some sub-structure based on the geographical origin, greater diversity in the Americas as opposed to Africa, and similar levels of diversity in West Africa and southern, eastern and central Africa. The resources presented allow for improved genetic dissection of economically important traits and the application of modern genomics-based approaches to cassava breeding and conservation.


Asunto(s)
Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Manihot/genética , Raíces de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , África , Mapeo Cromosómico , ADN Complementario/genética , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Genotipo , Manihot/crecimiento & desarrollo , Filogenia , Raíces de Plantas/crecimiento & desarrollo
19.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100357

RESUMEN

Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid Salix purpurea, diploid Salix viminalis, and tetraploid Salix miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.


Asunto(s)
Salix , Triploidía , Variaciones en el Número de Copia de ADN , Regulación de la Expresión Génica de las Plantas , Humanos , Vigor Híbrido/genética , Hibridación Genética , Fitomejoramiento , Salix/genética
20.
BMC Genomics ; 12: 1-11, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21733171

RESUMEN

BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM) for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L.), a species with high economic value but limited genomic resources. RESULTS: The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs) sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM) analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1) chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. CONCLUSIONS: We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.


Asunto(s)
Medicago sativa/genética , Polimorfismo de Nucleótido Simple , Secuencia de Bases , Etiquetas de Secuencia Expresada , Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Datos de Secuencia Molecular , Transición de Fase , Raíces de Plantas/genética , Brotes de la Planta/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA