RESUMEN
Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human ß-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
Asunto(s)
Antiinfecciosos/análisis , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Tonsilitis/microbiología , beta-Defensinas/análisis , Péptidos Catiónicos Antimicrobianos/análisis , Adhesión Bacteriana/inmunología , Proteínas Sanguíneas/análisis , Línea Celular , Niño , Preescolar , Estudios de Cohortes , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Humanos , Inmunidad Innata/inmunología , Tonsila Palatina/inmunología , Recurrencia , Técnicas de Cultivo de Tejidos , Tonsilectomía , Tonsilitis/inmunología , CatelicidinasRESUMEN
AWAP IV constitutes the C-terminal domain of the larger 81 kDa protein AWAK [Avian WAP (whey acidic protein) domain- and Kunitz domain-containing], which is predicted, through conserved domain database searching, to contain at least four WAP domains and one Kunitz domain. RT (reverse transcription)-PCR analyses revealed mRNA transcripts encoding AWAP IV in the small intestinal and kidney tissues of 5-day-old Salmonella-infected chicks. Time-kill antimicrobial assays using rAWAP IV (recombinant AWAP IV) cell lysate indicated antimicrobial activity against gram-positive and gram-negative bacteria including Salmonella, Streptococcus and Staphylococcus spp. In addition, permeabilization of the outer membrane of Salmonella, as shown by the NPN (N-phenyl-1-naphthylamine) fluorescent probe assay, supported the ability of rAWAP IV to disrupt prokaryotic membranes. WAP domains can function as inhibitors of serine protease activity, and the microbial serine proteases subtilisin and proteinase K were inhibited by rAWAP IV cell lysate. However, at comparable concentrations, no significant inhibition of the mammalian serine protease elastase was observed. The combined broad-spectrum antibacterial and anti-protease activities of AWAP IV suggest a novel role in the avian innate defence mechanisms operating against microbial infection.
Asunto(s)
Proteínas Aviares/química , Proteínas Aviares/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Aviares/genética , Expresión Génica , Hemólisis , Proteínas de la Leche/genética , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Estructura Terciaria de ProteínaRESUMEN
Lysozyme is an important component of the innate immune system, protecting the gastrointestinal tract from infection. The aim of the present study was to determine if lysozyme is expressed in the chicken ( Gallus gallus) intestine and to characterise the molecular forms expressed. Immunohistochemical staining localised lysozyme to epithelial cells of the villous epithelium along the length of the small intestine. There was no evidence for lysozyme expression in crypt epithelium and no evidence for Paneth cells. Immunoblots of chicken intestinal protein revealed three proteins: a 14-kDa band consistent with lysozyme c, and two additional bands of approximately 21 and 23 kDa, the latter consistent with lysozyme g. RT-PCR analyses confirmed that lysozyme c mRNA is expressed in 4-day, but not older chicken intestine and lysozyme g in 4- to 35-day chicken intestine. A novel chicken lysozyme g2 gene was identified by in silico analyses and mRNA for this lysozyme g2 was identified in the intestine from chickens of all ages. Chicken lysozyme g2 shows similarity with fish lysozyme g, including the absence of a signal peptide and cysteines involved in disulphide bond formation of the mammalian and bird lysozyme g proteins. Analyses using SecretomeP predict that chicken lysozyme g2 may be secreted by the non-classical secretory pathway. We conclude that lysozyme is expressed in the chicken small intestine by villous enterocytes. Lysozyme c, lysozyme g and g2 may fulfil complimentary roles in protecting the intestine.