Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 28(25): e202200121, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35263478

RESUMEN

The intense absorption of light to covering a large part of the visible spectrum is highly desirable for solar energy conversion schemes. To this end, we have developed novel anionic bis(4H-imidazolato)Cu(I) complexes (cuprates), which feature intense, panchromatic light absorption properties throughout the visible spectrum and into the NIR region with extinction coefficients up to 28,000 M-1 cm-1 . Steady-state absorption, (spectro)electrochemical and theoretical investigations reveal low energy (Vis to NIR) metal-to-ligand charge-transfer absorption bands, which are a consequence of destabilized copper-based donor states. These high-lying copper-based states are induced by the σ-donation of the chelating anionic ligands, which also feature low energy acceptor states. The optical properties are reflected in very low, copper-based oxidation potentials and three ligand-based reduction events. These electronic features reveal a new route to panchromatically absorbing Cu(I) complexes.

2.
Chemistry ; 28(72): e202202697, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36148551

RESUMEN

In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.

3.
J Am Chem Soc ; 143(24): 9082-9093, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34111929

RESUMEN

The optical properties of two Re(CO)3(bpy)Cl complexes in which the bpy is substituted with two donor (triphenylamine, TPA, ReTPA2) as well as both donor (TPA) and acceptor (benzothiadiazole, BTD, ReTPA-BTD) groups are presented. For ReTPA2 the absorption spectra show intense intraligand charge-transfer (ILCT) bands at 460 nm with small solvatochromic behavior; for ReTPA-BTD the ILCT transitions are weaker. These transitions are assigned as TPA → bpy transitions as supported by resonance Raman data and TDDFT calculations. The excited-state spectroscopy shows the presence of two emissive states for both complexes. The intensity of these emission signals is modulated by solvent. Time-resolved infrared spectroscopy definitively assigns the excited states present in CH2Cl2 to be MLCT in nature, and in MeCN the excited states are ILCT in nature. DFT calculations indicated this switching with solvent is governed by access to states controlled by spin-orbit coupling, which is sufficiently different in the two solvents, allowing to select out each of the charge-transfer states.

4.
Inorg Chem ; 59(10): 6736-6746, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32338504

RESUMEN

The photophysical properties of a series of rhenium(I) tricarbonyl and platinum(II) bis(acetylide) complexes containing a triphenylamine (TPA)-substituted 1,10-phenanthroline ligand have been examined. The complexes possess both metal-to-ligand charge-transfer (MLCT) and intraligand charge-transfer (ILCT) transitions that absorb in the visible region. The relative energies and ordering of the absorbing CT states have been successfully controlled by changing the metal center and modulating the donating ability of the TPA group through the addition of electron-donating methoxy and electron-withdrawing cyano groups. The ground-state properties behave in a predictable manner as a function of the TPA substituent and are characterized with a suite of techniques including electronic absorption spectroscopy, resonance Raman spectroscopy, electrochemistry, and time-dependent density functional theory calculations. However, systematic control over the ground-state properties of the complexes does not extend to their excited-state behavior. Unexpectedly, despite variation of both the MLCT and ILCT state energies, all of the luminescent complexes displayed near-isoenergetic emission at 298 K, yet the emissive lifetimes of the complexes vary from 290 ns to 3.9 µs. Excited-state techniques including transient absorption and transient resonance Raman, combined with a suite of quantum-chemical calculations, including scalar relativistic effects to elucidate competitive excited-state relaxation pathways, have been utilized to aid in assignment of the long-lived state in the complexes, which was shown to possess differing 3MLCT and 3ILCT contributions across the series.

5.
J Am Chem Soc ; 140(13): 4534-4542, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29537264

RESUMEN

The ground and excited state photophysical properties of a series of fac-[Re(L)(CO)3(α-diimine)] n+ complexes, where L = Br-, Cl-, 4-dimethylaminopyridine (dmap) and pyridine (py) have been extensively studied utilizing numerous electronic and vibrational spectroscopic techniques in conjunction with a suite of quantum chemical methods. The α-diimine ligand consists of 1,10-phenanthroline with the highly electron donating triphenylamine (TPA) appended in the 5 position. This gives rise to intraligand charge transfer (ILCT) states lying lower in energy than the conventional metal-to-ligand charge transfer (MLCT) state, the energies of which are red and blue-shifted, respectively, as the ancillary ligand, L becomes more electron withdrawing. The emitting state is 3ILCT in nature for all complexes studied, characterized through transient absorption and emission, transient resonance Raman (TR2), time-resolved infrared (TRIR) spectroscopy and TDDFT calculations. Systematic modulation of the ancillary ligand causes unanticipated variation in the 3ILCT lifetime by 2 orders of magnitude, ranging from 6.0 µs for L = Br- to 27 ns for L = py, without altering the nature of the excited state formed or the relative order of the other CT states present. Temperature dependent lifetime measurements and quantum chemical calculations provide no clear indication of close lying deactivating states, MO switching, contributions from a halide-to-ligand charge transfer (XLCT) state or dramatic changes in spin-orbit coupling. It appears that the influence of the ancillary ligand on the excited state lifetime could be explained in terms of energy gap law, in which there is a correlation between ln( knr) and Eem with a slope of -21.4 eV-1 for the 3ILCT emission.

6.
Phys Chem Chem Phys ; 20(38): 24843-24857, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30230487

RESUMEN

Heteroleptic Cu(i) complexes are a promising alternative towards traditional Ru(ii) photosensitizers. In particular, Cu(i) complexes of the type [Cu(P^P)(N^N)]+, where N^N represents a diimine and P^P a bulky diphosphine ligand, are already successfully applied for photocatalysis, organic light-emitting diodes or dye-sensitized solar cells. Therefore, this study aims for the systematic comparison of three novel heteroleptic Cu(i) compounds, composed of xantphos (xant) as P^P ligand and different diimine ligands with an extended π-system in the backbone, with their structurally related Ru(ii) analogues. In these Ru(ii) photosensitizers [Ru(bpy)2(N^N)]2+ (bpy = 2,2'-bipyridine) the same N^N ligands were used, namely, dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz). To gain an in-depth understanding of the photoinduced charge transfer processes, the photophysical features of these complexes and their electrochemically oxidized/reduced species were studied by a combination of UV-vis absorption, resonance Raman and spectroelectrochemistry. (TD)DFT calculations were applied to qualitatively analyze these measurements. As a result, the heteroleptic Cu(i) complexes exhibit comparable charge transfer properties to their Ru(ii) analogues, i.e. upon visible light excitation they undergo a metal-to-ligand charge transfer to the diimine ligand(s). In contrast, the reduced Cu(i)- and Ru(ii)-dppz complexes show considerably different electronic transitions. The singly reduced Cu(i)-dppz complexes are able to accumulate an additional electron at the phenanthroline moiety upon blue-light excitation, which is beneficial for multi-electron-transfer reactions. Upon low-energy light irradiation electronic transitions from the dppz- anion to the xant ligand are excited, which could shorten the lifetime of the photosensitizer intermediates in an unwanted way.

7.
J Phys Chem A ; 122(6): 1550-1559, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29369626

RESUMEN

A ruthenium complex with a half-sandwich geometry ([(p-cymene)Ru(Cl)(curcuminoid)]) was synthesized, characterized, and investigated regarding its ultrafast photophysics. These photophysical investigations of the complex revealed a weak and short-lived emission from the initially populated 1MLCT state and solvent-dependent photoinduced dynamics, where the secondarily populated 3MC state is stabilized by nonpolar solvents. Overall the decay of the 3dd-MC state to the ground state is completed within picoseconds. This short excited-state lifetime is in stark contrast to the typically observed long-lived 3MLCT states with lifetimes of nanoseconds or microseconds in unstrained, octahedral ruthenium complexes but is in good agreement with the findings for distorted octahedral complexes. This is pointing to the half-sandwich geometry as a new and easy approach to study these otherwise often concealed dd states.

8.
J Phys Chem A ; 122(32): 6558-6569, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30024161

RESUMEN

The light-switch mechanism of the complex [Ru(bpy)2(Br-dpqp)](PF6)2 (1, bpy = 2,2'-bipyridine, Br-dpqp = 12-bromo-14-ethoxydipyrido[3,2- a:2',3'- c]quinolino[3,2- h]phenazine), i.e., a light-up probe for the selective labeling of G-quadruplexes, is investigated by time-resolved transient absorption and emission spectroscopy. We show that, in contrast to the prototypical light-switch complex [Ru(bpy)2(dppz)](PF6)2 (2, dppz = dipyrido[3,2- a:2',3'- c]phenazine), a 3ππ* state localized on the π-extended ligand is the state determining the excited-state properties in both protic and aprotic environments. In aprotic environments, emission originates from a bright 3MLCTphen state, which is thermally accessible from the 3ππ* state at ambient temperature. In the presence of water, i.e., in environments resembling in cellulo situations, the thermally accessible 3MLCT state is altered and becomes close in energy to the 3ππ* state, which induces a rapid excited-state deactivation of the 3ππ* state and a comparably weak emission.


Asunto(s)
Complejos de Coordinación/efectos de la radiación , ADN/química , G-Cuádruplex , Sustancias Luminiscentes/efectos de la radiación , Rutenio/química , Complejos de Coordinación/química , Técnicas Electroquímicas , Ligandos , Luz , Sustancias Luminiscentes/química , Modelos Químicos , Oxidación-Reducción , Fenazinas/química , Piridinas/química , Teoría Cuántica , Espectrofotometría , Espectrometría Raman , Agua/química
9.
Chem Sci ; 9(17): 4152-4159, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29780545

RESUMEN

Increasing the efficiency of molecular artificial photosynthetic systems is mandatory for the construction of functional devices for solar fuel production. Decoupling the light-induced charge separation steps from the catalytic process is a promising strategy, which can be achieved thanks to the introduction of suitable electron relay units performing charge accumulation. We report here on a novel ruthenium tris-diimine complex able to temporarily store two electrons on a fused dipyridophenazine-pyridoquinolinone π-extended ligand upon visible-light irradiation in the presence of a sacrificial electron donor. Full characterization of this compound and of its singly and doubly reduced derivatives thanks to resonance Raman, EPR and (TD)DFT studies allowed us to localize the two electron-storage sites and to relate charge photoaccumulation with proton-coupled electron transfer processes.

10.
Dalton Trans ; 45(41): 16298-16308, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27711780

RESUMEN

The preparation and characterization of three series of novel ruthenium(ii) complexes are reported, each series differing by the nature of the ancillary ligands (2,2'-bipyridine - bpy, 1,10-phenanthroline - phen or 1,4,5,8-tetraazaphenanthrene - TAP). The third ligand was either the heptacyclic heterocycle dipyrido[3,2-a:2',3'-c]quinolino[3,2-h]phenazine (dpqp) substituted at position 12 by an hydroxyl (oxo), 2,2-dimethoxyethylamine (DMEA) or halogeno (Cl or Br) substituent, or the octacyclic dipyrido[3,2-a:2',3'-c]pyrido[2,3,4-de]quinolino[3,2-h]phenazine (dppqp), prepared by a multi-step "chemistry on the complex" strategy from [RuL2(oxo-dpqp)](PF6)2. The three steps, halogenation, substitution by a dimethoxyethylamino group and cyclization in trifluoroacetic acid, were performed in reasonable to high yields depending on the nature of the ancillary ligands. Isolation and purification processes were facilitated by the ability to switch the solubility of the complex from aqueous to organic solvents, depending on the counter-ion. All new complexes were fully characterized; in particular their absorption properties were compared by UV-vis spectroscopy. Finally, π-stacking properties induced by these extended ligands were studied by 1H NMR studies and quantum chemical calculations.

11.
Phys Rev Lett ; 100(10): 100502, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18352167

RESUMEN

We investigate the creation of highly entangled ground states in a system of three exchange-coupled qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate Greenberger-Horne-Zeilinger and exact W ground states are identified. The entanglement in the system is studied at finite temperature in terms of the mixed-state tangle tau. By generalizing a conjugate gradient optimization algorithm originally developed to evaluate the entanglement of formation, we demonstrate that tau can be calculated efficiently and with high precision. We identify the parameter regime for which the equilibrium entanglement of the tripartite system reaches its maximum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA