RESUMEN
Understanding the frequency and structural context of discrete noncovalent interactions between nucleotides is of pivotal significance in establishing the rules that govern RNA structure and dynamics. Although T-shaped contacts (i.e., perpendicular stacking contacts) between aromatic amino acids and nucleobases at the nucleic acid-protein interface have recently garnered attention, the analogous contacts within the nucleic acid structures have not been discussed. In this work, we have developed an automated method for identifying and unambiguously classifying T-shaped interactions between nucleobases. Using this method, we identified a total of 3261 instances of T-shaped (perpendicular stacking) contacts between two nucleobases in an array of RNA structures from an up-to-date data set of ≤3.5 Å resolution crystal structures deposited in the Protein Data Bank.
Asunto(s)
Ácidos Nucleicos , ARN , ARN/química , ADN/química , Nucleótidos/químicaRESUMEN
Prostate-specific membrane antigen (PSMA) is highly overexpressed in most prostate cancers and is clinically visualized using PSMA-specific probes incorporating glutamate-ureido-lysine (GUL). PSMA is effectively absent from certain high-mortality, treatment-resistant subsets of prostate cancers, such as neuroendocrine prostate cancer (NEPC); however, GUL-based PSMA tracers are still reported to have the potential to identify NEPC metastatic tumors. These probes may bind unknown proteins associated with PSMA-suppressed cancers. We have identified the up-regulation of PSMA-like aminopeptidase NAALADaseL and the metabotropic glutamate receptors (mGluRs) in PSMA-suppressed prostate cancers and find that their expression levels inversely correlate with PSMA expression and are associated with GUL-based radiotracer uptake. Furthermore, we identify that NAALADaseL and mGluR expression correlates with a unique cell cycle signature. This provides an opportunity for the future study of the biology of NEPC and potential therapeutic directions. Computationally predicting that GUL-based probes bind well to these targets, we designed and synthesized a fluorescent PSMA tracer to investigate these proteins in vitro, where it shows excellent affinity for PSMA, NAALADaseL, and specific mGluRs associated with poor prognosis.
Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Glutamatos , Lisina , Sondas Moleculares , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Urea , Animales , Antígenos de Superficie/química , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Expresión Génica , Glutamato Carboxipeptidasa II/química , Glutamatos/química , Humanos , Inmunohistoquímica , Lisina/química , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Imagen Molecular/métodos , Sondas Moleculares/química , Neoplasias de la Próstata/genética , Unión Proteica , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/químicaRESUMEN
BACKGROUND: Invadopodia facilitate cancer cell extravasation, but the molecular mechanism whereby invadopodia-specific proteases such as MT1-MMP are called to invadopodia is unclear. METHODS: Mass spectrometry and immunoprecipitation were used to identify interactors of MT1-MMP in metastatic breast cancer cells. After identification, siRNA and small molecule inhibitors were used to assess the effect these interactors had on cellular invasiveness. The chicken embryo chorioallantoic membrane (CAM) model was used to assess extravasation and invadopodia formation in vivo. RESULTS: In metastatic breast cancer cells, MT1-MMP was found to associate with plectin, a cytolinker and scaffolding protein. Complex formation between plectin and MT1-MMP launches invadopodia formation, a subtype we termed iplectin (i = invadopodial). iPlectin delivers MT1-MMP to invadopodia and is indispensable for regulating cell surface levels of the enzyme. Genetic depletion of plectin with siRNA reduced invadopodia formation and cell invasion in vitro. In vivo extravasation efficiency assays and intravital imaging revealed iplectin to be a key contributor to invadopodia ultrastructure and essential for extravasation. Pharmacologic inhibition of plectin using the small molecule Plecstatin-1 (PST-1) abrogated MT1-MMP delivery to invadopodia and extravasation efficiency. CONCLUSIONS: Anti-metastasis therapeutic approaches that target invadopodia are possible by disrupting interactions between MT1-MMP and iplectin. CLINICAL TRIAL REGISTRATION NUMBER: NCT04608357.
Asunto(s)
Neoplasias de la Mama , Metaloproteinasa 14 de la Matriz , Invasividad Neoplásica , Podosomas , Animales , Embrión de Pollo , Femenino , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Membrana Corioalantoides/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Plectina/metabolismo , Plectina/genética , Podosomas/metabolismo , ARN Interferente Pequeño/genética , Estudios Prospectivos , Cultivo Primario de CélulasRESUMEN
Arginine (Arg) forks are noncovalent recognition motifs wherein an Arg interacts with the phosphates and guanine nucleobases of RNA, providing extraordinary specific RNA:protein recognition. In this work, we carried out an in-depth DFT based quantum mechanical investigation on all known classes of Arg forks to estimate their intrinsic structural stabilities and interaction energies. The optimized structures closely mimic the structural characteristics of Arg forks and this close match between experimental and optimized geometries suggests that Arg forks are intrinsically stable and do not require additional support from other RNA or protein components. Both hydrogen-bonding and cation-π interactions are important for the intrinsic stability of Arg forks, providing an average interaction energy of -36.7 kcal mol-1. Furthermore, we found a direct correlation between Arg forks' interaction energies and the number of phosphates involved, which is more delicately modulated by other factors, like the types of hydrogen bonds and cation-π interactions that constitute the Arg fork. Additionally, we observed a positive correlation between the average interaction energies of Arg forks and the frequency of their occurrence in available crystal structures. At the broader level, this work establishes the groundwork for more precise modeling and understanding of RNA-protein interfaces, which could have potential implications in advancing the knowledge of biomolecular recognition patterns.
RESUMEN
Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two "major cannabinoids". However, their incorporation into clinical and nutraceutical preparations is challenging, owing to their limited bioavailability, low water solubility, and variable pharmacokinetic profiles. Understanding the organic chemistry of the major cannabinoids provides us with potential avenues to overcome these issues through derivatization. The resulting labile pro-drugs offer ready cannabinoid release in vivo, have augmented bioavailability, or demonstrate interesting pharmacological properties in their own right. This review identifies and discusses a subset of these advanced derivatization strategies for the major cannabinoids, where the starting material is the pure phytocannabinoid itself, and the final product either a cannabinoid pro-drug, or a novel pharmacoactive material.
Asunto(s)
Cannabidiol , Cannabinoides , Profármacos , Disponibilidad Biológica , Cannabinoides/farmacología , Dronabinol/química , Dronabinol/farmacocinética , Cannabidiol/química , Cannabidiol/farmacocinética , Administración OralRESUMEN
Nucleobase π-π stacking is one of the crucial organizing interactions within three-dimensional (3D) RNA architectures. Characterizing the structural variability of these contacts in RNA crystal structures will help delineate their subtleties and their role in determining function. This analysis of different stacking geometries found in RNA X-ray crystal structures is the largest such survey to date; coupled with quantum-mechanical calculations on typical representatives of each possible stacking arrangement, we determined the distribution of stacking interaction energies. A total of 1,735,481 stacking contacts, spanning 359 of the 384 theoretically possible distinct stacking geometries, were identified. Our analysis reveals preferential occurrences of specific consecutive stacking arrangements in certain regions of RNA architectures. Quantum chemical calculations suggest that 88 of the 359 contacts possess intrinsically stable stacking geometries, whereas the remaining stacks require the RNA backbone or surrounding macromolecular environment to force their formation and maintain their stability. Our systematic analysis of π-π stacks in RNA highlights trends in the occurrence and localization of these noncovalent interactions and may help better understand the structural intricacies of functional RNA-based molecular architectures.
Asunto(s)
ARN , ARN/química , TermodinámicaRESUMEN
The aluminum ion battery (AIB) is a promising technology, but there is a lack of understanding of the desired nature of the batteries' electrolytes. The ionic charge carriers in these batteries are not simply Al3+ ions but the anionic AlCl4- and Al2Cl7-, which form in the electrolyte. Using computational analysis, this study illustrates the effect of mole ratios and organic solvents to improve the AIB electrolytes. To this end, molecular dynamics simulations were conducted on varying ratios forming acidic, neutral, and basic mixtures of the AlCl3 salt with 1-ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid (IL) and an organic solvent electrolyte [dichloromethane (DCM) or toluene]. The data obtained from diffusion calculations indicates that the solvents could improve the transport properties. Both DCM and toluene lead to higher diffusion coefficients, and higher conductivity. Detailed calculations demonstrated solvents can effectively improve the formation of AlCl3â¯Cl (AlCl4-) and AlCl4-···AlCl4- (Al2Cl7-) especially in acidic mixtures. The densities, around 1.25 g/cm3 for electrolyte mixtures of AlCl3-EMImCl, were consistent with experiment. These results, in agreement with experimental findings, strongly suggest that DCM in acidic media with AlCl3 and EMImCl might provide a promising basis for battery development.
RESUMEN
Invariant natural killer (iNK) T cells, Type I iNKTs, are responsible for the production of pro-inflammatory cytokines which induce a systemic immune response. They are distinctive in possessing an semi-invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a protein closely related to the class I major histocompatibility complex, conserved across multiple mammalian species in a class of proteins well-renowned for their high degree of polymorphism. This receptor's first potent identified antigen is the α-galactosylceramide, KRN7000, a synthetic glycosphingolipid closely related to those isolated from bacteria that were found on a Japanese marine sponge. A corresponding terrestrial antigen remained unidentified until two specific diacylglycerol-containing glycolipids, reported to activate iNKT cells, were isolated from Streptococcus pneumoniae. We report the total synthesis and immunological re-evaluation of these two glycolipids. The compounds are unable to meaningfully activate iNKT cells. Computational modelling shows that these ligands, while being capable of interacting with the CD1d receptor, create a different surface for the binary complex that makes formation of the ternary complex with the iNKT T-cell receptor difficult. Together these results suggest that the reported activity might have been due to an impurity in the original isolated sample and highlights the importance of taking care when reporting biological activity from isolated natural products.
Asunto(s)
Productos Biológicos , Células T Asesinas Naturales , Animales , Productos Biológicos/metabolismo , Citocinas/metabolismo , Diglicéridos/metabolismo , Galactosilceramidas , Glucolípidos/metabolismo , Ligandos , Mamíferos/metabolismo , Células T Asesinas Naturales/metabolismo , Streptococcus pneumoniae/metabolismoRESUMEN
Mono- and (bis)benzimidazoliums were evaluated both experimentally and computationally for their potential as pseudopolyrotaxane axle building blocks. Their aggregation and photophysical behavior, along with their potential to form a [2]pseudorotaxane with dibenzyl-24-crown-8, was studied through the synergistic application of 1D/2D and diffusion-ordered NMR spectroscopy, mass spectrometry, ultraviolet-visible and fluorescence spectroscopy, and time-dependent density functional theory. Their photophysical behavior was measured and modeled as a function of protonation state, solvent, and concentration. The axles show strong solvochromaticism and a very pronounced concentration-dependent optical profile, including self-quenching when a pseudorotaxane is formed. This axle with multiple recognition sites has the potential to form pseudorotaxanes with tunable optical behavior.
Asunto(s)
Rotaxanos , Rotaxanos/química , Modelos Moleculares , Espectroscopía de Resonancia Magnética/métodosRESUMEN
Kynurenic acid is a by-product of tryptophan metabolism in humans, with abnormal levels indicative of disease. There is a need for water-soluble receptors that selectively bind kynurenic acid, allowing for detection and quantification. We report here the high-affinity binding of kynurenic acid in aqueous media to a resorcinarene salt receptor decorated with four flexible naphthalene groups at the upper rim. Experimental results from 1H NMR, isothermal titration calorimetry, and electronic absorption and fluorescence spectroscopies all support high-affinity binding and selectivity for kynurenic acid over tryptophan. The measured binding constant (K = 1.46 ± 0.21 × 105 M-1) is one order of magnitude larger than that observed with other resorcinarene receptors. The present host-guest system can be employed for sensory recognition of kynurenic acid. Computational studies reveal the key role of a series of cooperative attractive intra- and inter-molecular interactions contributing to an optimal binding process in this system.
Asunto(s)
Calixarenos , Ácido Quinurénico , Calixarenos/química , Humanos , Naftalenos , Fenilalanina/análogos & derivados , Triptófano , Agua/químicaRESUMEN
In the present work, 86 available high resolution X-ray structures of proteins that contain one or more guanidinium ions (Gdm+) are analyzed for the distribution and nature of noncovalent interactions between Gdm+ and amino-acid residues. A total of 1044 hydrogen-bonding interactions were identified, of which 1039 are N-Hâ¯O, and five are N-Hâ¯N. Acidic amino acids are more likely to interact with Gdm+ (46% of interactions, 26% Asp and 20% Glu), followed by Pro (19% of interactions). DFT calculations on the identified Gdm+-amino acid hydrogen-bonded pairs reveal that although Gdm+ interacts primarily with the backbone amides of nonpolar amino acids, Gdm+ does interact with the sidechains of polar and acidic amino acids. We classified the optimized Gdm+-amino acid pairs into parallel [p], bifurcated [b], single hydrogen bonded [s] and triple hydrogen bonded [t] types. The [p] and [t] type pairs possess higher average interaction strength that is stronger than that of [b] and [s] type pairs. Negatively charged aspartate and glutamate residues interact with Gdm+ ion exceptionally tightly (-76 kcal mol-1) in [p] type complexes. This work provides statistical and energetics insights to better describe the observed destabilization or denaturation process of proteins by guanidinium salts.
Asunto(s)
Aminoácidos , Proteínas , Guanidina/química , Desnaturalización Proteica , Proteínas/química , Ácido Glutámico/química , Iones/química , Aminoácidos Acídicos , Enlace de HidrógenoRESUMEN
Alkylating reagents based on thioimidazolium ionic liquids were synthesized and the influence of the anion on the alkylation reaction mechanism explored in detail using both experimental and computational methods. Thioimidazolium cations transfer alkyl substituents to nucleophiles, however the reaction rate was highly dependent on anion identity, demonstrating that the anion is not innocent in the mechanism. Detailed analysis of the computationally-derived potential energy surfaces associated with possible mechanisms indicated that this dependence arises from a combination of anion induced electronic, steric and coordinating effects, with highly nucleophilic anions catalyzing a 2-step process while highly non-nucleophilic, delocalized anions favor a 1-step reaction. This work also confirms the presence of ion-pairs and aggregates in solution thus supporting anion-induced control over the reaction rate and mechanism. These findings provide new insight into an old reaction allowing for better design of cationic alkylators in synthesis, gene expression, polymer science, and protein chemistry applications.
RESUMEN
The Lewis acid-mediated Nicholas reactions of propargyl acetate-Co2(CO)6 complexes with a series of potassium alkynyltrifluoroborates and potassium alkenyltrifluoroborates are described. Alkynyltrifluoroborates directly alkynylate the intermediate propargyldicobalt cations. In contrast, alkenyltrifluoroborates proceed through one of the three modes of dominant reactivity: C-2-substituted alkenyltrifluorobrates directly alkenylate, predominantly with the retention of stereochemistry. C-1-substituted alkenyltrifluoroborates alkenylate at C-2. Potassium vinyltrifluoroborate incorporates a cyclopropane at the site propargyl to alkynedicobalt. Computational analysis of these systems explains the differential modes of reactivity of alkenyltrifluoroborates and outlines the probable mechanisms for the formation of each product.
Asunto(s)
Ácidos de Lewis , Potasio , Catálisis , Cationes , EstereoisomerismoRESUMEN
Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/ß-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 µM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 µM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 µM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.
Asunto(s)
Antioxidantes/aislamiento & purificación , Extractos Vegetales/análisis , Tracheophyta/química , Ureasa/antagonistas & inhibidores , Antioxidantes/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Mediciones Luminiscentes , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/aislamiento & purificación , Ureasa/químicaRESUMEN
Cethyl-2-methylresorcinarene (A), pyridine (B), and a set of 10 carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple noncovalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution, as explored by both experimental and computational methods. The interactions between A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions between A and B, demonstrating positive cooperativity. Our results reveal that the two-component system such as that formed by A and B can form the basis for the development of specific sensors for the molecular recognition of carboxylic acids.
Asunto(s)
Ácidos Carboxílicos , Ácidos Carboxílicos/química , Enlace de HidrógenoRESUMEN
In this work, 1.8 nm graphene quantum dots (GQDs), exhibiting bright blue fluorescence, were prepared using a bottom-up synthesis from citric acid. The fluorescence of the GQDs could be almost completely quenched (about 96%) by adding Hg2+. Quenching was far less efficient with other similar heavy metals, Tl+, Pb2+ and Bi3+. Fluorescence could be near quantitatively restored through the introduction of thiocyanate. This "turn-on" fluorescence can thus be used to detect both or either environmental and physiological contaminants mercury and thiocyanate and could prove useful for the development of simple point-of-care diagnostics in the future. Graphical Abstract.
Asunto(s)
Colorantes Fluorescentes/química , Grafito/química , Mercurio/análisis , Puntos Cuánticos/química , Tiocianatos/análisis , Colorantes Fluorescentes/síntesis química , Espectrometría de FluorescenciaAsunto(s)
Tutoría/métodos , Investigadores/educación , Estudiantes , Enseñanza , Universidades , Mentores , Grupo Paritario , Factores de TiempoRESUMEN
(S)-2,4-Diaminobutanoic acid (DABA) is a noncanonical amino acid often co-produced by cyanobacteria along with ß-N-methylamino-l-alanine (BMAA) in algal blooms. Although BMAA is a well-established neurotoxin, the toxicity of DABA remains unclear. As part of our development of biocompatible materials, we wish to make use of DABA as both a building block and as the end-product of enzymatically induced depolymerization; however, if it is toxic at very low concentrations, this would not be possible. We examined the toxicity of DABA using both in vivo embryonic and adult zebrafish models. At higher sublethal concentrations (700 µm), the fish demonstrated early signs of cardiotoxicity. Adolescent zebrafish were able to tolerate a higher concentration. Post-mortem histological analysis of juvenile zebrafish showed no liver or brain abnormalities associated with hepato- or neurotoxicity. Combined, these results show that DABA exhibits no overt toxicity at concentrations (100-300 µm) within an order of magnitude of those envisioned for its application. This study further highlights the low cost and ease of using zebrafish as an early-stage toxicological screening tool.
Asunto(s)
Aminobutiratos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/anomalías , Corazón/efectos de los fármacos , Corazón/embriología , Frecuencia Cardíaca/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/embriología , Hígado/crecimiento & desarrollo , Organogénesis/efectos de los fármacos , Natación , Pez Cebra/embriologíaRESUMEN
Single crystal X-ray structures of halogen-bonded assemblies formed between host N-hexylammonium resorcinarene bromide (1) or N-cyclohexylammonium resorcinarene chloride (2), and 1,4-diiodooctafluorobutane and accompanying small solvent guests (methanol, acetonitrile and water) are presented. The guests' inclusion affects the geometry of the cavity of the receptors 1 and 2, while the divalent halogen bond donor 1,4-diiodooctafluorobutane determines the overall nature of the halogen bond assembly. The crystal lattice of 1 contains two structurally different dimeric assemblies A and B, formally resulting in the mixture of a capsular dimer and a dimeric pseudo-capsule. 1H and 19F NMR analyses supports the existence of these halogen-bonded complexes and enhanced guest inclusion in solution.
RESUMEN
Engineered hydrogels have been extensively used to direct cell function in 3D cell culture models, which are more representative of the native cellular microenvironment than conventional 2D cell culture. Previously, hyaluronan-furan and bis-maleimide polyethylene glycol hydrogels were synthesized via Diels-Alder chemistry at acidic pH, which did not allow encapsulation of viable cells. In order to enable gelation at physiological pH, the reaction kinetics were accelerated by replacing the hyaluronan-furan with the more electron-rich hyaluronan-methylfuran. These new click-cross-linked hydrogels gel faster and at physiological pH, enabling encapsulation of viable cells, as demonstrated with 3D culture of 5 different cancer cell lines. The methylfuran accelerates Diels-Alder cycloaddition yet also increases the retro Diels-Alder reaction. Using computational analysis, we gain insight into the mechanism of the increased Diels-Alder reactivity and uncover that transition state geometry and an unexpected hydrogen-bonding interaction are important contributors to the observed rate enhancement. This cross-linking strategy serves as a platform for bioconjugation and hydrogel synthesis for use in 3D cell culture and tissue engineering.