Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 159(5): 1070-1085, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416946

RESUMEN

Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Transducción de Señal , Animales , Embrión no Mamífero/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Receptores Notch/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra/metabolismo
2.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451068

RESUMEN

The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.


Asunto(s)
Células Madre Mesenquimatosas , Pez Cebra , Ratones , Animales , Pez Cebra/genética , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis , Embrión de Mamíferos , Mesonefro , Gónadas
3.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37342957

RESUMEN

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Asunto(s)
Actinas , Anemia , Factores de Intercambio de Guanina Nucleótido , Inflamación , Animales , Humanos , Ratones , Actinas/genética , Actinas/metabolismo , Anemia/etiología , Anemia/genética , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Hematopoyesis , Inflamación/etiología , Inflamación/genética , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35178545

RESUMEN

Loss or damage to the mandible caused by trauma, treatment of oral malignancies, and other diseases is treated using bone-grafting techniques that suffer from numerous shortcomings and contraindications. Zebrafish naturally heal large injuries to mandibular bone, offering an opportunity to understand how to boost intrinsic healing potential. Using a novel her6:mCherry Notch reporter, we show that canonical Notch signaling is induced during the initial stages of cartilage callus formation in both mesenchymal cells and chondrocytes following surgical mandibulectomy. We also show that modulation of Notch signaling during the initial post-operative period results in lasting changes to regenerate bone quantity one month later. Pharmacological inhibition of Notch signaling reduces the size of the cartilage callus and delays its conversion into bone, resulting in non-union. Conversely, conditional transgenic activation of Notch signaling accelerates conversion of the cartilage callus into bone, improving bone healing. Given the conserved functions of this pathway in bone repair across vertebrates, we propose that targeted activation of Notch signaling during the early phases of bone healing in mammals may both augment the size of the initial callus and boost its ossification into reparative bone.


Asunto(s)
Curación de Fractura , Pez Cebra , Animales , Regeneración Ósea , Callo Óseo/metabolismo , Curación de Fractura/fisiología , Mamíferos , Mandíbula
5.
Cell ; 138(2): 271-85, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632178

RESUMEN

Macrophages clear pathogens and damaged or aged cells from the blood stream via phagocytosis. Cell-surface CD47 interacts with its receptor on macrophages, SIRPalpha, to inhibit phagocytosis of normal, healthy cells. We find that mobilizing cytokines and inflammatory stimuli cause CD47 to be transiently upregulated on mouse hematopoietic stem cells (HSCs) and progenitors just prior to and during their migratory phase, and that the level of CD47 on these cells determines the probability that they are engulfed in vivo. CD47 is also constitutively upregulated on mouse and human myeloid leukemias, and overexpression of CD47 on a myeloid leukemia line increases its pathogenicity by allowing it to evade phagocytosis. We conclude that CD47 upregulation is an important mechanism that provides protection to normal HSCs during inflammation-mediated mobilization, and that leukemic progenitors co-opt this ability in order to evade macrophage killing.


Asunto(s)
Antígeno CD47/inmunología , Células Madre Hematopoyéticas/inmunología , Células Madre Neoplásicas/inmunología , Fagocitosis , Animales , Anticuerpos Monoclonales , Supervivencia Celular , Humanos , Macrófagos/inmunología , Ratones , Trasplante de Neoplasias , Proteínas Tirosina Quinasas/química , Receptores Inmunológicos , Trasplante Heterólogo , Regulación hacia Arriba , Tirosina Quinasa 3 Similar a fms
6.
Nature ; 512(7514): 319-23, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25119047

RESUMEN

Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development and requires intimate contact between signal-emitting and signal-receiving cells, although little is known regarding when, where and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta. Here we show in zebrafish that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a (also known as f11r) and migrate axially across the ventral somite, where Jam2a and the Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a-Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the dorsal aorta.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Molécula A de Adhesión de Unión/metabolismo , Molécula B de Adhesión de Unión/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Aorta/citología , Aorta/crecimiento & desarrollo , Aorta/metabolismo , Diferenciación Celular , Movimiento Celular , Molécula A de Adhesión de Unión/genética , Molécula B de Adhesión de Unión/genética , Fenotipo , Receptores de Superficie Celular/genética , Somitos/citología , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
7.
Angew Chem Int Ed Engl ; 58(40): 14327-14333, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31295389

RESUMEN

Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Nucleótidos/metabolismo , Polisacáridos/metabolismo , Azúcares/metabolismo , Animales , Colorantes Fluorescentes/química , Estructura Molecular , Nucleótidos/química , Polisacáridos/química , Azúcares/química , Pez Cebra/embriología
8.
EMBO J ; 33(20): 2363-73, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25230933

RESUMEN

Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Diferenciación Celular , Hemangioblastos/citología , Hemangioblastos/fisiología , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Receptor Notch1/genética , Receptor Notch3 , Receptores Notch/genética , Transducción de Señal , Somitos/citología , Somitos/embriología , Somitos/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Development ; 142(6): 1050-61, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25758220

RESUMEN

The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Hemangioblastos/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Aorta/citología , Aorta/embriología , Proteínas Bacterianas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Cartilla de ADN/genética , Citometría de Flujo , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Proteínas Luminiscentes , Mesodermo/embriología , Oligonucleótidos Antisentido/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Imagen de Lapso de Tiempo , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
10.
Blood ; 128(26): 3052-3060, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-27827822

RESUMEN

During hematopoiesis, the balance between proliferation, differentiation, and apoptosis is tightly regulated in order to maintain homeostasis. Failure in these processes can ultimately lead to uncontrolled proliferation and leukemia. Phosphatase and tensin homolog (PTEN) is one of the molecular pathways involved in this balance. By opposing PI3-kinases, PTEN inhibits proliferation and promotes differentiation and is thus considered a tumor suppressor. Indeed, PTEN is frequently mutated in many cancers, including leukemias. Loss of PTEN often leads to lymphoid cancers. However, little is known about the molecular events that regulate PTEN signaling during lymphopoiesis. In this study, we used zebrafish to address this. We report that N-myc downstream-regulated gene 1b (ndrg1b) rescues lymphoid differentiation after PTEN inhibition. We also show that a previously uncharacterized gene, fam49ab, inhibits T-cell differentiation, a phenotype that can be rescued by ndrg1b We propose that ndrg1b and fam49ab are 2 new modulators of PTEN signaling that control lymphoid differentiation in the zebrafish thymus.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfopoyesis , Fosfohidrolasa PTEN/metabolismo , Linfocitos T/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Hematopoyesis/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Linfopoyesis/efectos de los fármacos , Morfolinos/farmacología , Familia de Multigenes , Mutación/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Timocitos/efectos de los fármacos , Timocitos/metabolismo , Timo/metabolismo , Pez Cebra/embriología
11.
J Immunol ; 196(1): 135-43, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26590317

RESUMEN

The IL-2 receptor γ common (IL-2Rγc) chain is the shared subunit of the receptors for the IL-2 family of cytokines, which mediate signaling through JAK3 and various downstream pathways to regulate lymphopoiesis. Inactivating mutations in human IL-2Rγc result in SCID, a primary immunodeficiency characterized by greatly reduced numbers of lymphocytes. This study used bioinformatics, expression analysis, gene ablation, and specific pharmacologic inhibitors to investigate the function of two putative zebrafish IL-2Rγc paralogs, il-2rγc.a and il-2rγc.b, and downstream signaling components during early lymphopoiesis. Expression of il-2rγc.a commenced at 16 h post fertilization (hpf) and rose steadily from 4-6 d postfertilization (dpf) in the developing thymus, with il-2rγc.a expression also confirmed in adult T and B lymphocytes. Transcripts of il-2rγc.b were first observed from 8 hpf, but waned from 16 hpf before reaching maximal expression at 6 dpf, but this was not evident in the thymus. Knockdown of il-2rγc.a, but not il-2rγc.b, substantially reduced embryonic lymphopoiesis without affecting other aspects of hematopoiesis. Specific targeting of zebrafish Jak3 exerted a similar effect on lymphopoiesis, whereas ablation of zebrafish Stat5.1 and pharmacologic inhibition of PI3K and MEK also produced significant but smaller effects. Ablation of il-2rγc.a was further demonstrated to lead to an absence of mature T cells, but not B cells in juvenile fish. These results indicate that conserved IL-2Rγc signaling via JAK3 plays a key role during early zebrafish lymphopoiesis, which can be potentially targeted to generate a zebrafish model of human SCID.


Asunto(s)
Janus Quinasa 3/genética , Linfopoyesis/inmunología , Receptores de Interleucina-2/inmunología , Inmunodeficiencia Combinada Grave/inmunología , Proteínas de Pez Cebra/inmunología , Animales , Linfocitos B/inmunología , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Linfopoyesis/genética , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Morfolinos/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores de Interleucina-2/genética , Factor de Transcripción STAT5/genética , Inmunodeficiencia Combinada Grave/genética , Transducción de Señal/inmunología , Linfocitos T/inmunología , Pez Cebra , Proteínas de Pez Cebra/genética
12.
Dev Biol ; 409(1): 129-138, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26586199

RESUMEN

Hematopoietic stem cells are formed during embryonic development, and serve as the foundation of the definitive blood program for life. Notch signaling has been well established as an essential direct contributor to HSC specification. However, several recent studies have indicated that the contribution of Notch signaling is complex. HSC specification requires multiple Notch signaling inputs, some received directly by hematopoietic precursors, and others that occur indirectly within neighboring somites. Of note, proinflammatory signals provided by primitive myeloid cells are needed for HSC specification via upregulation of the Notch pathway in hemogenic endothelium. In addition to multiple requirements for Notch activation, recent studies indicate that Notch signaling must subsequently be repressed to permit HSC emergence. Finally, Notch must then be reactivated to maintain HSC fate. In this review, we discuss the growing understanding of the dynamic contributions of Notch signaling to the establishment of hematopoiesis during development.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Arterias/metabolismo , Humanos , Inflamación/patología , Somitos/metabolismo
13.
Nature ; 474(7350): 220-4, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21654806

RESUMEN

Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Somitos/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Linaje de la Célula , Hematopoyesis , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Somitos/citología , Proteínas Wnt/deficiencia , Proteínas Wnt/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
14.
Blood ; 124(2): 220-8, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24869937

RESUMEN

In nonmammalian vertebrates, the functional units of hemostasis are thrombocytes. Thrombocytes are thought to arise from bipotent thrombocytic/erythroid progenitors (TEPs). TEPs have been experimentally demonstrated in avian models of hematopoiesis, and mammals possess functional equivalents known as megakaryocyte/erythroid progenitors (MEPs). However, the presence of TEPs in teleosts has only been speculated. To identify and prospectively isolate TEPs, we identified, cloned, and generated recombinant zebrafish thrombopoietin (Tpo). Tpo mRNA expanded itga2b:GFP(+) (cd41:GFP(+)) thrombocytes as well as hematopoietic stem and progenitor cells (HSPCs) in the zebrafish embryo. Utilizing Tpo in clonal methylcellulose assays, we describe for the first time the prospective isolation and characterization of TEPs from transgenic zebrafish. Combinatorial use of zebrafish Tpo, erythropoietin, and granulocyte colony stimulating factor (Gcsf) allowed the investigation of HSPCs responsible for erythro-, myelo-, and thrombo-poietic differentiation. Utilizing these assays allowed the visualization and differentiation of hematopoietic progenitors ex vivo in real-time with time-lapse and high-throughput microscopy, allowing analyses of their clonogenic and proliferative capacity. These studies indicate that the functional role of Tpo in the differentiation of thrombocytes from HSPCs is well conserved among vertebrate organisms, positing the zebrafish as an excellent model to investigate diseases caused by dysregulated erythro- and thrombo-poietic differentiation.


Asunto(s)
Hematopoyesis/genética , Trombopoyetina/genética , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Plaquetas/fisiología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Embrión no Mamífero , Células Madre Hematopoyéticas/fisiología , Pez Cebra/embriología
15.
Nature ; 464(7285): 108-11, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20154733

RESUMEN

A major goal of regenerative medicine is to instruct formation of multipotent, tissue-specific stem cells from induced pluripotent stem cells (iPSCs) for cell replacement therapies. Generation of haematopoietic stem cells (HSCs) from iPSCs or embryonic stem cells (ESCs) is not currently possible, however, necessitating a better understanding of how HSCs normally arise during embryonic development. We previously showed that haematopoiesis occurs through four distinct waves during zebrafish development, with HSCs arising in the final wave in close association with the dorsal aorta. Recent reports have suggested that murine HSCs derive from haemogenic endothelial cells (ECs) lining the aortic floor. Additional in vitro studies have similarly indicated that the haematopoietic progeny of ESCs arise through intermediates with endothelial potential. Here we have used the unique strengths of the zebrafish embryo to image directly the generation of HSCs from the ventral wall of the dorsal aorta. Using combinations of fluorescent reporter transgenes, confocal time-lapse microscopy and flow cytometry, we have identified and isolated the stepwise intermediates as aortic haemogenic endothelium transitions to nascent HSCs. Finally, using a permanent lineage tracing strategy, we demonstrate that the HSCs generated from haemogenic endothelium are the lineal founders of the adult haematopoietic system.


Asunto(s)
Aorta/citología , Aorta/embriología , Diferenciación Celular , Linaje de la Célula , Endotelio Vascular/citología , Células Madre Hematopoyéticas/citología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Separación Celular , Células Endoteliales/citología , Endotelio Vascular/embriología , Femenino , Citometría de Flujo , Genes Reporteros/genética , Masculino , Microscopía Confocal , Microscopía Fluorescente , Transgenes/genética , Pez Cebra/sangre
17.
Blood ; 122(24): 3918-28, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24128862

RESUMEN

Granulocyte colony-stimulating factor (Gcsf) drives the proliferation and differentiation of granulocytes, monocytes, and macrophages (mφs) from hematopoietic stem and progenitor cells (HSPCs). Analysis of the zebrafish genome indicates the presence of 2 Gcsf ligands, likely resulting from a duplication event in teleost evolution. Although Gcsfa and Gcsfb share low sequence conservation, they share significant similarity in their predicted ligand/receptor interaction sites and structure. Each ligand displays differential temporal expression patterns during embryogenesis and spatial expression patterns in adult animals. To determine the functions of each ligand, we performed loss- and gain-of-function experiments. Both ligands signal through the Gcsf receptor to expand primitive neutrophils and mφs, as well as definitive granulocytes. To further address their functions, we generated recombinant versions and tested them in clonal progenitor assays. These sensitive in vitro techniques indicated similar functional attributes in supporting HSPC growth and differentiation. Finally, in addition to supporting myeloid differentiation, zebrafish Gcsf is required for the specification and proliferation of hematopoietic stem cells, suggesting that Gcsf represents an ancestral cytokine responsible for the broad support of HSPCs. These findings may inform how hematopoietic cytokines evolved following the diversification of teleosts and mammals from a common ancestor.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/genética , Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor Estimulante de Colonias de Granulocitos/metabolismo , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Hibridación in Situ , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Confocal , Mielopoyesis/genética , Receptores de Factor Estimulante de Colonias de Granulocito/genética , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
18.
Blood ; 122(8): e1-11, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23861249

RESUMEN

Teleost fish are among the most ancient vertebrates possessing an adaptive immune system with B and T lymphocytes that produce memory responses to pathogens. Most bony fish, however, have only 2 types of B lymphocytes, in contrast to the 4 types available to mammals. To better understand the evolution of adaptive immunity, we generated transgenic zebrafish in which the major immunoglobulin M (IgM(+)) B-cell subset expresses green fluorescence protein (GFP) (IgM1:eGFP). We discovered that the earliest IgM(+) B cells appear between the dorsal aorta and posterior cardinal vein and also in the kidney around 20 days postfertilization. We also examined B-cell ontogeny in adult IgM1:eGFP;rag2:DsRed animals, where we defined pro-B, pre-B, and immature/mature B cells in the adult kidney. Sites of B-cell development that shift between the embryo and adult have previously been described in birds and mammals. Our results suggest that this developmental shift occurs in all jawed vertebrates. Finally, we used IgM1:eGFP and cd45DsRed;blimp1:eGFP zebrafish to characterize plasma B cells and investigate B-cell function. The IgM1:eGFP reporter fish are the first nonmammalian B-cell reporter animals to be described. They will be important for further investigation of immune cell evolution and development and host-pathogen interactions in zebrafish.


Asunto(s)
Linfocitos B/citología , Evolución Molecular , Pez Cebra/embriología , Pez Cebra/inmunología , Inmunidad Adaptativa , Animales , Animales Modificados Genéticamente , Linfocitos B/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Sistema Inmunológico/embriología , Inmunoglobulina M/metabolismo , Activación de Linfocitos , Fagocitosis
19.
Microb Pathog ; 79: 57-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25617657

RESUMEN

Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1ß (il1b) and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Larva/microbiología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus agalactiae/crecimiento & desarrollo , Pez Cebra/microbiología , Animales , Encéfalo/microbiología , Encéfalo/patología , Interleucina-1beta/análisis , Interleucina-8/análisis , Streptococcus agalactiae/patogenicidad , Análisis de Supervivencia , Virulencia , Factores de Virulencia/análisis , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA