Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(6): e63534, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318947

RESUMEN

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Asunto(s)
Fenotipo , Humanos , Masculino , Femenino , Niño , Proteínas de Unión al ARN/genética , Estudios de Asociación Genética , Preescolar , Mutación/genética , Adolescente , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Predisposición Genética a la Enfermedad
2.
J Peripher Nerv Syst ; 29(2): 279-285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874107

RESUMEN

AIM: Biallelic mutations in the PTRH2 gene have been associated with infantile multisystem neurological, endocrine, and pancreatic disease (IMNEPD), a rare autosomal recessive disorder of variable expressivity characterized by global developmental delay, intellectual disability or borderline IQ level, sensorineural hearing loss, ataxia, and pancreatic insufficiency. Various additional features may be included, such as peripheral neuropathy, facial dysmorphism, hypothyroidism, hepatic fibrosis, postnatal microcephaly, cerebellar atrophy, and epilepsy. Here, we report the first Italian family presenting only predominant neurological features. METHODS: Extensive neurological and neurophysiological evaluations have been conducted on the two affected brothers and their healthy mother since 1996. The diagnosis of peripheral neuropathy of probable hereditary origin was confirmed through a sural nerve biopsy. Exome sequencing was performed after the analysis of major neuropathy-associated genes yielded negative results. RESULTS: Whole-exome sequencing analysis identified the homozygous substitution c.256C>T (p.Gln86Ter) in the PTRH2 gene in the two siblings. According to American College of Medical Genetics and Genomics (ACMG) guidelines, the variant has been classified as pathogenic. At 48 years old, the proband's reevaluation confirmed a demyelinating sensorimotor polyneuropathy with bilateral sensorineural hearing loss that had been noted since he was 13. Additionally, drug-resistant epileptic seizures occurred when he was 32 years old. No hepatic or endocrinological signs developed. The younger affected brother, 47 years old, has an overlapping clinical presentation without epilepsy. INTERPRETATION: Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants. We thereby hope to better define IMNEPD and facilitate the identification and diagnosis of this novel disease entity.


Asunto(s)
Enfermedades Pancreáticas , Humanos , Masculino , Italia , Femenino , Enfermedades Pancreáticas/genética , Enfermedades Pancreáticas/fisiopatología , Persona de Mediana Edad , Codón sin Sentido , Linaje , Adulto
3.
Neuropediatrics ; 54(6): 426-429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37257496

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a rare disease characterized by early contractures, progressive muscle weakness, and cardiac abnormalities. Different subtypes of EDMD have been described, with the two most common forms represented by the X-linked EDMD1, caused by mutations in the EMD gene encoding emerin, and the autosomal EDMD2, due to mutations in the LMNA gene encoding lamin A/C. A clear definition of the magnetic resonance imaging (MRI) pattern in the two forms, and especially in the rarer EDMD1, is still lacking, although a preferential involvement of the medial head of the gastrocnemius has been suggested in EDMD2. We report a 13-year-old boy with mild limb girdle muscle weakness, elbow and ankle contractures, with absence of emerin at muscle biopsy, carrying a hemizygous frameshift mutation on the EMD gene (c.153dupC/p.Ser52Glufs*9) of maternal inheritance. Minor cardiac rhythm abnormalities were detected at 24-hour Holter electrocardiogram and required ß-blocker therapy. MRI scan of the thighs showed a mild diffuse involvement, while tibialis anterior, extensor digitorum longus, peroneus longus, and medial gastrocnemius were the most affected muscles in the leg. We also provide a review of the muscular MRI data in EDMD patients and highlight the relative heterogeneity of the MRI patterns found in EDMDs, suggesting that muscle MRI should be studied in larger EDMD cohorts to better define disease patterns and to cover the wide disease spectrum.


Asunto(s)
Contractura , Distrofia Muscular de Emery-Dreifuss , Distrofia Muscular de Emery-Dreifuss Ligada a X , Masculino , Humanos , Niño , Adolescente , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofia Muscular de Emery-Dreifuss/diagnóstico por imagen , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Mutación , Debilidad Muscular , Imagen por Resonancia Magnética
4.
Neuropathol Appl Neurobiol ; 48(7): e12842, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35904184

RESUMEN

AIMS: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. METHODS: We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. RESULTS: In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. CONCLUSIONS: Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Enfermedad de la Neurona Motora , Enfermedades del Sistema Nervioso Periférico , Humanos , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/genética , Mutación , Esfingolípidos , Serina/química , Serina/genética
5.
Muscle Nerve ; 65(1): 96-104, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687219

RESUMEN

INTRODUCTION/AIMS: Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. METHODS: We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II-related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. RESULTS: Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. DISCUSSION: We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first-line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedades Musculares , Creatina Quinasa , Variaciones en el Número de Copia de ADN , Electromiografía , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Humanos
6.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34415310

RESUMEN

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidad Menor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Femenino , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple
7.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142455

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.


Asunto(s)
Ácido Glutámico , Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/genética , Ácido Glutámico/metabolismo , Humanos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Neurotransmisores/metabolismo
8.
Clin Neuropathol ; 40(6): 310-318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34281632

RESUMEN

AIM: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5). MATERIALS AND METHODS: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD). RESULTS: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable. CONCLUSION: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.


Asunto(s)
Distrofias Musculares , Miositis , Sarcoglicanopatías , Biopsia , Humanos , Músculo Esquelético , Sarcoglicanopatías/genética
9.
J Hum Genet ; 63(6): 761-764, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29556034

RESUMEN

We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease.


Asunto(s)
Creatina Quinasa/sangre , Distrofina/genética , Exones , Eliminación de Gen , Distrofia Muscular de Duchenne/diagnóstico , Adolescente , Biopsia , Codón de Terminación , ADN Complementario/genética , Humanos , Masculino , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Mialgia/fisiopatología , Sistemas de Lectura Abierta , Fenotipo , ARN Mensajero/genética
10.
Brain ; 140(11): 2879-2894, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053855

RESUMEN

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.


Asunto(s)
Encefalopatías/genética , Fisura del Paladar/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Facies , Discapacidad Intelectual/genética , Nistagmo Patológico/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino , Microcefalia/genética , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Linaje , Receptores de GABA-A/metabolismo , Síndrome , Xenopus laevis , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
11.
Lab Invest ; 96(8): 862-71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27295345

RESUMEN

Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.


Asunto(s)
Distrofia Muscular de Duchenne/metabolismo , Factores de Transcripción/biosíntesis , Proteínas de Motivos Tripartitos/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Estudios de Casos y Controles , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
12.
Ann Neurol ; 76(2): 206-12, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24782409

RESUMEN

OBJECTIVE: Alterations of sphingolipid metabolism are implicated in the pathogenesis of many neurodegenerative disorders. METHODS: We identified a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, in 4 siblings affected by a progressive disorder with myoclonic epilepsy and dementia. CerS1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. RESULTS: We demonstrated that the mutation decreases C18-ceramide levels. In addition, we showed that downregulation of CerS1 in a neuroblastoma cell line triggers ER stress response and induces proapoptotic pathways. INTERPRETATION: This study demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.


Asunto(s)
Ceramidas/biosíntesis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Epilepsias Mioclónicas Progresivas/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Argelia , Demencia/genética , Demencia/metabolismo , Retículo Endoplásmico/genética , Humanos , Proteínas de la Membrana/genética , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Hermanos , Esfingosina N-Aciltransferasa/genética
13.
Epilepsy Behav ; 51: 53-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26262932

RESUMEN

Chromodomain helicase DNA-binding protein 2 (CHD2) gene mutations have been reported in patients with myoclonic-atonic epilepsy (MAE), as well as in patients with Lennox-Gastaut, Dravet, and Jeavons syndromes and other epileptic encephalopathies featuring generalized epilepsy and intellectual disability. The aim of this study was to assess the impact of CHD2 mutations in a series of patients with MAE. Twenty patients affected by MAE were included in the study. We analyzed antecedents, age at onset, seizure semiology and frequency, EEG, treatment, and neuropsychological outcome. We sequenced the CHD2 gene with Sanger technology. We identified a CHD2 frameshift mutation in one patient (c.4256del19). He was a 17-year-old boy with no familial history for epilepsy and normal development before epilepsy onset. Epilepsy onset was at 3years and 5months: he presented with myoclonic-atonic seizures, head drops, myoclonic jerks, and absences. Interictal EEGs revealed slow background activity associated with generalized epileptiform abnormalities and photoparoxysmal response. His seizures were highly responsive to valproic acid, and an attempt to withdraw it led to seizure recurrence. Neuropsychological evaluation revealed moderate intellectual disability. Chromodomain-helicase-DNA-binding protein 2 is not the major gene associated with MAE. Conversely, CHD2 could be responsible for a proper phenotype characterized by infantile-onset generalized epilepsy, intellectual disability, and photosensitivity, which might overlap with MAE, Lennox-Gastaut, Dravet, and Jeavons syndromes.


Asunto(s)
Proteínas de Unión al ADN/genética , Epilepsias Mioclónicas/genética , Epilepsia Generalizada/genética , Preescolar , Electroencefalografía , Epilepsia/genética , Femenino , Humanos , Masculino , Mutación , Fenotipo
15.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177406

RESUMEN

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Humanos , Distroglicanos/genética , Distroglicanos/metabolismo , Haploinsuficiencia , Distrofias Musculares/genética , Músculo Esquelético/patología , Enfermedades Musculares/patología
16.
Epilepsia ; 54(5): e69-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23448223

RESUMEN

15q.13.3 microdeletion has been described in a variety of neurodevelopmental disorders. Epilepsy appears to be a common feature and, specifically, the 15q13.3 microdeletion is found in about 1% of patients with idiopathic generalized epilepsy. Recently, absence seizures with intellectual disability (ID) have been reported in patients carrying this mutation. We describe two families in which several affected members carry a 15q13.3 microdeletion in a pattern suggestive of autosomal dominant inheritance. Their phenotype includes mainly absence epilepsy and mild ID, suggesting only similarities with genetic/idiopathic generalized epilepsies but not typical features. The importance of studying such families is crucial to broaden the phenotype and understand the long-term outcome of patients with this condition.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 15/genética , Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Electroencefalografía , Epilepsia Generalizada/patología , Salud de la Familia , Femenino , Humanos , Inteligencia , Italia , Imagen por Resonancia Magnética , Masculino , Mutación
17.
Epilepsia ; 54(10): 1761-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24032425

RESUMEN

PURPOSE: To investigate whether patients with typical absence seizures (TAS) starting in the first 3 years of life, conformed to Panayiotopoulos's definition of childhood absence epilepsy (CAE), show different electroclinical course than those not fulfilling CAE criteria. METHODS: In this multicenter retrospective study, we choose a fixed duration follow-up of 36 months to examine the electroclinical course of epilepsy in all children with TAS starting before 3 years of age. The probands who fulfilled Panayiotopoulos's criteria for CAE were classified as having pure early onset absence epilepsy (P-EOAE), whereas those who did not as nonpure EOAE (NP-EOAE). In addition, these two groups of patients were further stratified according to the number of antiepileptic drugs taken to obtain initial seizure control (mono-, bi-, and tritherapy). KEY FINDINGS: Patients with P-EOAE (n = 111) showed earlier initial seizure control (p = 0.030) and better seizure-free survival curve (p = 0.004) than those with NP-EOAE (n = 77). No mutation in SLC2A1 gene or abnormal neuroimaging was observed in P-EOAE. Among patients with NP-EOAE, those receiving tritherapy showed increased risk of structural brain abnormalities (p = 0.001) or SLC2A1 mutations (p = 0.001) but fewer myoclonic features (p = 0.031) and worse seizure-free survival curve (p = 0.047) than those treated with mono- and bitherapy. Children with NP-EOAE had 2.134 the odds of having relapse during the follow-up compare to those with P-EOAE. SIGNIFICANCE: Children with early onset TAS who did meet Panayiotopoulos's criteria showed a favorable course of epilepsy, whereas patients not fulfilling Panayiotopoulos's criteria showed increased risk of relapse at long-term follow-up.


Asunto(s)
Epilepsia Tipo Ausencia/diagnóstico , Edad de Inicio , Encéfalo/fisiopatología , Preescolar , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Femenino , Transportador de Glucosa de Tipo 1/genética , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Pronóstico , Recurrencia , Estudios Retrospectivos , Factores de Riesgo , Factores Sexuales
18.
Stem Cell Res ; 66: 103007, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580887

RESUMEN

Sotos syndrome (SoS) is a neurodevelopmental disorder caused by haploinsufficiency of the NSD1 gene located on chromosome 5 region q35.3. In order to understand the pathogenesis of Sotos syndrome and in view of future therapeutic approaches for its efficient treatment, we generated two human induced pluripotent stem cells (iPSCs) lines from one SoS patient carrying a 5q35 microdeletion. The established iPSCs expressed pluripotency markers, showing the capacity to differentiate into the three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Sotos , Humanos , Síndrome de Sotos/genética , Síndrome de Sotos/patología , Células Madre Pluripotentes Inducidas/patología , Histona Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Haploinsuficiencia
19.
Front Pediatr ; 11: 1051026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923276

RESUMEN

Neurofibromatosis type 1 (NF1) is a neurocutaneous syndrome caused by pathogenic variants in the NF1 gene, encoding a multidomain inhibitor of Ras activity. Thus, NF1 is considered a RASopathy and drugs targeting the RAS/mitogen-activated protein kinase (MAPK) pathway, such as the MAP kinase (MEK) 1/2 inhibitor Selumetinib, are promising therapeutic options to treat NF1-associated tumors, especially plexiform neurofibromas and optic way gliomas. However, surgical treatment is often required for NF1-related cerebrovascular manifestations, such as moyamoya syndrome (MMS). We report a case of an 8-year-old patient receiving Selumetinib at the dose of 25 mg/m2 orally 2 times a day as a treatment for many plexiform neurofibromas. He suffered from two close strokes and brain MRI revealed a severe cerebral vasculopathy consistent with MMS, with marked stenosis of both the internal carotid arteries. A two-step surgical revascularization procedure was performed, consisting of a direct by-pass with an encephalo-mio-synangiosis (EMS) followed by encephalo-duro-arterio-synangiosis (EDAS). Surprisingly, despite the surgical technical success, follow-up MRI revealed lack of the expected revascularization. Selumetinib is a powerful therapeutic option in the treatment of severe NF1-related tumors. However, our findings suggest that this drug may interfere with cerebral neovascularization in patients with MMS requiring surgical revascularization. This is supported by the crucial role of the Vascular-Endothelial Growth Factor (VEGF), whose signaling pathway involve MAPK, as promoter of the neovascularization. Our observations suggest to adopt an imaging surveillance strategy to prevent unfavorable surgical outcome in patients with NF1-associated MMS receiving Selumetinib, and that priority should be given to surgical revascularization.

20.
Epilepsia Open ; 8(4): 1314-1330, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37491868

RESUMEN

OBJECTIVE: NPRL3-related epilepsy (NRE) is an emerging condition set within the wide GATOR-1 spectrum with a particularly heterogeneous and elusive phenotypic expression. Here, we delineated the genotype-phenotype spectrum of NRE, reporting an illustrative familial case and reviewing pertinent literature. METHODS: Through exome sequencing (ES), we investigated a 12-year-old girl with recurrent focal motor seizures during sleep, suggestive of sleep-related hypermotor epilepsy (SHE), and a family history of epilepsy in siblings. Variant segregation analysis was performed by Sanger sequencing. All previously published NRE patients were thoroughly reviewed and their electroclinical features were analyzed and compared with the reported subjects. RESULTS: In the proband, ES detected the novel NPRL3 frameshift variant (NM_001077350.3): c.151_152del (p.Thr51Glyfs*5). This variant is predicted to cause a loss of function and segregated in one affected brother. The review of 76 patients from 18 publications revealed the predominance of focal-onset seizures (67/74-90%), with mainly frontal and frontotemporal (32/67-47.7%), unspecified (19/67-28%), or temporal (9/67-13%) onset. Epileptic syndromes included familial focal epilepsy with variable foci (FFEVF) (29/74-39%) and SHE (11/74-14.9%). Fifteen patients out of 60 (25%) underwent epilepsy surgery, 11 of whom achieved complete seizure remission (11/15-73%). Focal cortical dysplasia (FCD) type 2A was the most frequent histopathological finding. SIGNIFICANCE: We reported an illustrative NPRL3-related epilepsy (NRE) family with incomplete penetrance. This condition consists of a heterogeneous spectrum of clinical and neuroradiological features. Focal-onset motor seizures are predominant, and almost half of the cases fulfill the criteria for SHE or FFEVF. MRI-negative cases are prevalent, but the association with malformations of cortical developments (MCDs) is significant, especially FCD type 2a. The beneficial impact of epilepsy surgery in patients with MCD-related epilepsy further supports the inclusion of brain MRI in the workup of NRE patients.


Asunto(s)
Epilepsias Parciales , Epilepsia Parcial Motora , Epilepsia Refleja , Síndromes Epilépticos , Masculino , Femenino , Humanos , Niño , Epilepsias Parciales/genética , Convulsiones/genética , Proteínas Activadoras de GTPasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA