Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 130(17): 2797-2807, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724755

RESUMEN

Macrophages infiltrate and establish in developing organs from an early stage, often before these have become vascularized. Similarly, leukocytes, in general, can quickly migrate through tissues to any site of wounding. This unique capacity is rooted in their characteristic amoeboid motility, the genetic basis of which is poorly understood. Trim33 (also known as Tif1-γ), a nuclear protein that associates with specific DNA-binding transcription factors to modulate gene expression, has been found to be mainly involved in hematopoiesis and gene regulation mediated by TGF-ß. Here, we have discovered that in Trim33-deficient zebrafish embryos, primitive macrophages are unable to colonize the central nervous system to become microglia. Moreover, both macrophages and neutrophils of Trim33-deficient embryos display a reduced basal mobility within interstitial tissues, and a profound lack of a response to inflammatory recruitment signals, including local bacterial infections. Correlatively, Trim33-deficient mouse bone marrow-derived macrophages display a strongly reduced three-dimensional amoeboid mobility in fibrous collagen gels. The transcriptional regulator Trim33 is thus revealed as being essential for the navigation of macrophages and neutrophils towards developmental or inflammatory cues within vertebrate tissues.


Asunto(s)
Inflamación/patología , Macrófagos/metabolismo , Neutrófilos/metabolismo , Factores de Transcripción/metabolismo , Animales , Infecciones Bacterianas/patología , Células de la Médula Ósea/metabolismo , Movimiento Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Inflamación/metabolismo , Ratones , Microglía/metabolismo , Mutación/genética , Células Mieloides/metabolismo , Retina/patología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Blood ; 119(24): 5621-31, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22490804

RESUMEN

To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells.


Asunto(s)
Antineoplásicos/toxicidad , Hidrazonas/toxicidad , Leucemia/patología , Quinolinas/toxicidad , Pez Cebra/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Crisis Blástica/patología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/uso terapéutico , Leucemia/tratamiento farmacológico , Ratones , Mitosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/química , Quinolinas/farmacocinética , Quinolinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Dev Biol ; 368(2): 261-72, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22659140

RESUMEN

The regulation of cell cycle rate is essential for the correct timing of proliferation and differentiation during development. Changes to cell cycle rate can have profound effects on the size, shape and cell types of a developing organ. We previously identified a zebrafish mutant ceylon (cey) that has a severe reduction in T cells and hematopoietic stem/progenitor cells (HSPCs). Here we find that the cey phenotype is due to absence of the gene transducin (beta)-like 3 (tbl3). The tbl3 homolog in yeast regulates the cell cycle by maintaining rRNA levels and preventing p53-induced cell death. Zebrafish tbl3 is maternally expressed, but later in development its expression is restricted to specific tissues. Tissues expressing tbl3 are severely reduced in cey mutants, including HSPCs, the retina, exocrine pancreas, intestine, and jaw cartilage. Specification of these tissues is normal, suggesting the reduced size is due to a reduced number of differentiated cells. Tbl3 MO injection into either wild-type or p53-/- mutant embryos phenocopies cey, indicating that loss of tbl3 causes specific defects in cey. Progression of both hematopoietic and retinal development is delayed beginning at 3 day post fertilization due to a slowing of the cell cycle. In contrast to yeast, reduction of Tbl3 causes a slowing of the cell cycle without a corresponding increase in p53 induced cell death. These data suggest that tbl3 plays a tissue-specific role regulating cell cycle rate during development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Embrión no Mamífero/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Northern Blotting , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Masculino , Microscopía Fluorescente , Mutación , Retina/citología , Retina/embriología , Retina/metabolismo , Factores de Tiempo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
4.
Nat Genet ; 34(1): 59-64, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12669066

RESUMEN

Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R-binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/deficiencia , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Eritropoyesis/genética , Mitosis/genética , Mutación , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Anemia Diseritropoyética Congénita/genética , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fenotipo , Pez Cebra/sangre
5.
Dev Biol ; 349(2): 483-93, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21073867

RESUMEN

The zebrafish pharyngeal cartilage is derived from the pharyngeal apparatus, a vertebrate-specific structure derived from all three germ layers. Developmental aberrations of the pharyngeal apparatus lead to birth defects such as Treacher-Collins and DiGeorge syndromes. While interactions between endoderm and neural crest (NC) are known to be important for cartilage formation, the full complement of molecular players involved and their roles remain to be elucidated. Activated leukocyte cell adhesion molecule a (alcama), a member of the immunoglobulin (Ig) superfamily, is among the prominent markers of pharyngeal pouch endoderm, but to date no role has been assigned to this adhesion molecule in the development of the pharyngeal apparatus. Here we show that alcama plays a crucial, non-autonomous role in pharyngeal endoderm during zebrafish cartilage morphogenesis. alcama knockdown leads to defects in NC differentiation, without affecting NC specification or migration. These defects are reminiscent of the phenotypes observed when Endothelin 1 (Edn1) signaling, a key regulator of cartilage development is disrupted. Using gene expression analysis and rescue experiments we show that Alcama functions downstream of Edn1 signaling to regulate NC differentiation and cartilage morphogenesis. In addition, we also identify a role for neural adhesion molecule 1.1 (nadl1.1), a known interacting partner of Alcama expressed in neural crest, in NC differentiation. Our data shows that nadl1.1 is required for alcama rescue of NC differentiation in edn1(-/-) mutants and that Alcama interacts with Nadl1.1 during chondrogenesis. Collectively our results support a model by which Alcama on the endoderm interacts with Nadl1.1 on NC to mediate Edn1 signaling and NC differentiation during chondrogenesis.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Región Branquial/metabolismo , Condrogénesis/fisiología , Endotelina-1/metabolismo , Cresta Neural/fisiología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Región Branquial/citología , Diferenciación Celular/fisiología , Clonación Molecular , Cartilla de ADN/genética , Endotelina-1/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Inmunohistoquímica , Hibridación Fluorescente in Situ , Leupeptinas , Modelos Biológicos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Cresta Neural/citología , Proteínas de Pez Cebra/genética
6.
Nature ; 440(7080): 96-100, 2006 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-16511496

RESUMEN

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.


Asunto(s)
Eritroblastos/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Pez Cebra/metabolismo , Anemia/sangre , Anemia/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Diferenciación Celular , Secuencia Conservada , Eritroblastos/citología , Eritroblastos/patología , Regulación de la Expresión Génica , Prueba de Complementación Genética , Hemo/metabolismo , Homeostasis , Humanos , Sobrecarga de Hierro , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/genética , Proteínas de Transporte de Membrana/genética , Ratones , Proteínas Mitocondriales , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Madre/citología , Células Madre/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
7.
Blood ; 114(21): 4654-63, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19729519

RESUMEN

The nuclear protein FOG-1 binds transcription factor GATA-1 to facilitate erythroid and megakaryocytic maturation. However, little is known about the function of FOG-1 during myeloid and lymphoid development or how FOG-1 expression is regulated in any tissue. We used in situ hybridization, gain- and loss-of-function studies in zebrafish to address these problems. Zebrafish FOG-1 is expressed in early hematopoietic cells, as well as heart, viscera, and paraspinal neurons, suggesting that it has multifaceted functions in organogenesis. We found that FOG-1 is dispensable for endoderm specification but is required for endoderm patterning affecting the expression of late-stage T-cell markers, independent of GATA-1. The suppression of FOG-1, in the presence of normal GATA-1 levels, induces severe anemia and thrombocytopenia and expands myeloid-progenitor cells, indicating that FOG-1 is required during erythroid/myeloid commitment. To functionally interrogate whether GATA-1 regulates FOG-1 in vivo, we used bioinformatics combined with transgenic assays. Thus, we identified 2 cis-regulatory elements that control the tissue-specific gene expression of FOG-1. One of these enhancers contains functional GATA-binding sites, indicating the potential for a regulatory loop in which GATA factors control the expression of their partner protein FOG-1.


Asunto(s)
Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares , Proteínas de Pez Cebra , Pez Cebra/embriología , Animales , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Hematopoyesis/fisiología , Hibridación in Situ , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Elementos Reguladores de la Transcripción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Commun Biol ; 4(1): 681, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083746

RESUMEN

T cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.


Asunto(s)
Chaperonina con TCP-1/inmunología , Proteostasis/inmunología , Linfocitos T/inmunología , Timocitos/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Cultivadas , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoma/inmunología , Proteoma/metabolismo , Proteostasis/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Timocitos/citología , Timocitos/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
9.
JAMA Oncol ; 7(10): 1521-1528, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410295

RESUMEN

IMPORTANCE: Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. OBJECTIVE: To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. EXPOSURES: Focal 22q11.22 deletions. MAIN OUTCOMES AND MEASURES: Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). RESULTS: This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). CONCLUSIONS AND RELEVANCE: This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Estudios de Cohortes , Femenino , Eliminación de Gen , Humanos , Factor de Transcripción Ikaros/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico
10.
Immunogenetics ; 62(1): 23-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20054533

RESUMEN

Zebrafish (Danio rerio) has become an increasingly important model for immunological study. Its immune system is remarkably similar to that of mammals and includes both the adaptive and innate branches. Zebrafish T cells express functional T cell receptors (TCR), and all four TCR loci are present within the genome. Using 5'-rapid amplification of cDNA ends, we cloned and sequenced zebrafish TCRbeta transcripts. TCRbeta VDJ coding joints demonstrate conservation of mechanisms used by other vertebrate species to increase junctional diversity. Using the sequences obtained, along with previously published data, we comprehensively annotated the zebrafish TCRbeta locus. Overall, organization of the locus resembles that seen in mammals. There are 51 V segments, a single D segment, 27 Jbeta1 segments, a single Jbeta2 segment, and two constant regions. This description of the zebrafish TCRbeta locus has the potential to enhance immunological research in zebrafish and further our understanding of mammalian TCR repertoire generation.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Pez Cebra/inmunología , Animales , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Región Variable de Inmunoglobulina/genética , Técnicas de Amplificación de Ácido Nucleico , Regiones Promotoras Genéticas , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Exones VDJ , Proteínas de Pez Cebra/inmunología
11.
Dev Comp Immunol ; 32(7): 745-57, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18222541

RESUMEN

The zebrafish has emerged as a powerful new vertebrate model of human disease. Initially prominent in developmental biology, the zebrafish has now been adopted into varied fields of study including immunology. In this review, we describe the characteristics of the zebrafish, which make it a versatile model, including a description of its immune system with its remarkable similarities to its mammalian counterparts. We review the zebrafish disease models of innate and adaptive immunity. Models of immune system malignancies are discussed that are either based on oncogene over-expression or on our own forward-genetic screen that was designed to identify new models of immune dysregulation.


Asunto(s)
Modelos Animales de Enfermedad , Pez Cebra/inmunología , Animales , Enfermedad , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/inmunología
12.
J Neuropathol Exp Neurol ; 77(10): 877-882, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060228

RESUMEN

Chimeric antigen receptor (CAR) T cells are a new and powerful class of cancer immunotherapeutics that have shown potential for the treatment of hematopoietic malignancies. The tremendous promise of this approach is tempered by safety concerns, including potentially fatal neurotoxicity, sometimes but not universally associated with cytokine release syndrome. We describe the postmortem examination of a brain from a 21-year-old patient with relapsed pre-B cell acute lymphoblastic leukemia (ALL) who died from fulminant cerebral edema following CAR T-cell infusion. We found a range of changes that included activation of microglia, expansion of perivascular spaces by proteinaceous exudate, and clasmatodendrosis-a beading of glial fibrillary acidic protein consistent with astrocyte injury. Notably, within the brain parenchyma, we identified only infrequent T cells and did not identify ALL cells or CAR T cells. The overall findings are nonspecific but raise the possibility of astrocyte and blood-brain barrier dysfunction as a potential etiology of fatal CAR T-cell neurotoxicity in this patient.


Asunto(s)
Edema Encefálico/inducido químicamente , Edema Encefálico/diagnóstico por imagen , Inmunoterapia/efectos adversos , Receptores Quiméricos de Antígenos/administración & dosificación , Linfocitos T , Edema Encefálico/metabolismo , Resultado Fatal , Humanos , Masculino , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Adulto Joven
13.
Biotechniques ; 43(5): 610, 612, 614, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18072590

RESUMEN

Here we describe a method for the isolation of PCR-ready genomic DNA from various zebrafish tissues that is based on a previously published murine protocol. The DNA solutions are of sufficient quality to allow PCR detection of transgenes from all commonly used zebrafish tissues. In sperm, transgene amplification was successful even when diluted 1000-fold, allowing easy identification of transgenic founders. Given its speed and low cost, we anticipate that the adoption of this method will streamline DNA isolation for zebrafish research.


Asunto(s)
ADN/aislamiento & purificación , Genoma , Reacción en Cadena de la Polimerasa/métodos , Pez Cebra/genética , Animales , Proteínas Fluorescentes Verdes/metabolismo , Especificidad de Órganos , Transgenes
14.
PLoS Biol ; 2(8): E237, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15314655

RESUMEN

Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.


Asunto(s)
Eritrocitos/patología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Alelos , Animales , Apoptosis , Trasplante de Médula Ósea , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Supervivencia Celular , Trasplante de Células , Clonación Molecular , Codón de Terminación , ADN/química , Proteínas de Unión al ADN/química , Eritrocitos/citología , Regulación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/citología , Heterocromatina/metabolismo , Homocigoto , Immunoblotting , Ratones , Datos de Secuencia Molecular , Mutación , Fenotipo , Unión Proteica , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra , Proteínas de Pez Cebra/química
15.
Nat Commun ; 6: 8375, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26411530

RESUMEN

The ontogeny of haematopoietic niches in vertebrates is essentially unknown. Here we show that the stromal cells of the caudal haematopoietic tissue (CHT), the first niche where definitive haematopoietic stem/progenitor cells (HSPCs) home in zebrafish development, derive from the caudal somites through an epithelial-mesenchymal transition (EMT). The resulting stromal cell progenitors accompany the formation of the caudal vein sinusoids, the other main component of the CHT niche, and mature into reticular cells lining and interconnecting sinusoids. We characterize a zebrafish mutant defective in definitive haematopoiesis due to a deficiency in the nascent polypeptide-associated complex alpha subunit (NACA). We demonstrate that the defect resides not in HSPCs but in the CHT niche. NACA-deficient stromal cell progenitors initially develop normally together with the sinusoids, and HSPCs home to the resulting niche, but stromal cell maturation is compromised, leading to a niche that is unable to support HSPC maintenance, expansion and differentiation.


Asunto(s)
Embrión no Mamífero/fisiología , Transición Epitelial-Mesenquimal , Células Madre Hematopoyéticas/fisiología , Chaperonas Moleculares/fisiología , Somitos/citología , Animales , Apoptosis , Supervivencia Celular , Embrión no Mamífero/citología , Hematopoyesis , Mutación , Pez Cebra
16.
Dev Comp Immunol ; 28(4): 295-306, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14698216

RESUMEN

Type I interferons (IFNs) represent a crucial component of the innate immune response to viruses. An important downstream effector of IFN is the Mx gene, which is activated solely through this pathway. Mx proteins are characterized by a tripartite GTP-binding domain, dynamin family signature, and leucine zipper motif. Mx genes are transcribed upon activation of an interferon-stimulated response element (ISRE) located in the Mx promoter region. In this article, we describe the cloning and analysis of an Mx gene and its corresponding promoter from the zebrafish (Danio rerio). The deduced amino acid sequence of zebrafish Mx contains the conserved GTP-binding domain, dynamin family signature, and leucine zipper motif common to Mx proteins, and shows a 50% identity to human MxA and 69% identity both to rainbow trout and to Atlantic salmon. Zebrafish liver cells produced high levels of Mx mRNA in response to induction by the known IFN-inducer polyinosinic-polycytidylic acid (Poly[I:C]). The zebrafish Mx promoter contains two ISREs homologous to those found in the promoter regions of many IFN-inducible genes, and was able to drive transcription of a luciferase reporter gene when induced by either purified zebrafish IFN or Poly[I:C].


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , ADN Complementario/genética , Leucina Zippers/genética , Datos de Secuencia Molecular , Mutación , Proteínas de Resistencia a Mixovirus , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Transfección
17.
PLoS One ; 9(4): e94486, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718491

RESUMEN

In patients with multiple sclerosis (MS) and in mice with experimental autoimmune encephalomyelitis (EAE), proliferating autoreactive T cells play an important role in the pathogenesis of the disease. Due to the importance of these myelin-specific T cells, these cells have been therapeutic targets in a variety of treatments. Previously we found that Lenaldekar (LDK), a novel small molecule, could inhibit exacerbations in a preclinical model of MS when given at the start of an EAE exacerbation. In those studies, we found that LDK could inhibit human T cell recall responses and murine myelin responses in vitro. In these new studies, we found that LDK could inhibit myelin specific T cell responses through the insulin-like growth factor-1 receptor (IGF-1R) pathway. Alteration of this pathway led to marked reduction in T cell proliferation and expansion. Blocking this pathway could account for the observed decreases in clinical signs and inflammatory demyelinating disease, which was accompanied by axonal preservation. Our data indicate that IGF-1R could be a potential target for new therapies for the treatment of autoimmune diseases where autoreactive T cell expansion is a requisite for disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Hidrazonas/uso terapéutico , Inflamación/patología , Factor I del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Terapia Molecular Dirigida , Quinolinas/uso terapéutico , Animales , Axones/efectos de los fármacos , Axones/patología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Hidrazonas/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-2/metabolismo , Ratones Endogámicos C57BL , Proteína Proteolipídica de la Mielina/inmunología , Fragmentos de Péptidos/inmunología , Quinolinas/farmacología , Receptor IGF Tipo 1/metabolismo , Recurrencia , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Theilovirus/efectos de los fármacos , Theilovirus/fisiología
18.
PLoS One ; 8(3): e58145, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533583

RESUMEN

DiGeorge syndrome (DGS) is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1's role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1(-/-) mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1(-/-) mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1's role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1's molecular signaling pathway guided by the cardiac phenotype of tbx1(-/-) mutants. We show for the first time that wnt11r (wnt11 related), a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a) regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1(-/-) mutants. In addition, both wnt11r (-/-) mutants and alcama morphants have heart looping and differentiation defects similar to tbx1(-/-) mutants. Strikingly, heart looping and differentiation in tbx1(-/-) mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our understanding of DGS and heart development.


Asunto(s)
Síndrome de DiGeorge/genética , Corazón/embriología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Pez Cebra
19.
Curr Protoc Pharmacol ; Chapter 14: Unit14.24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23456612

RESUMEN

Zebrafish models continue to gain popularity as in vivo models for drug discovery. Described in this overview are advantages and challenges of zebrafish drug screening, as well as a novel in vivo screen for immunomodulatory compounds using transgenic, T cell reporting zebrafish larvae designed for discovery of compounds targeting T cell leukemia. This assay system allows rapid screening of large numbers of compounds while avoiding the pitfalls of assays based on cell cultures, which lack biologic context and are afflicted by genomic instability. The rationale for this approach is based on similarities of immature normal T cells and developmentally arrested, malignant lymphoblasts in mammalian species. The screening algorithm has been used to identify a nontoxic compound with activity in both acute leukemia models and models of multiple sclerosis, demonstrating the utility of this screening procedure.


Asunto(s)
Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Activación de Linfocitos/efectos de los fármacos , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Leucemia de Células T/tratamiento farmacológico , Leucemia de Células T/inmunología , Pez Cebra
20.
Science ; 340(6135): 976-8, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23579497

RESUMEN

Isolated congenital asplenia (ICA) is characterized by the absence of a spleen at birth in individuals with no other developmental defects. The patients are prone to life-threatening bacterial infections. The unbiased analysis of exomes revealed heterozygous mutations in RPSA in 18 patients from eight kindreds, corresponding to more than half the patients and over one-third of the kindreds studied. The clinical penetrance in these kindreds is complete. Expression studies indicated that the mutations carried by the patients-a nonsense mutation, a frameshift duplication, and five different missense mutations-cause autosomal dominant ICA by haploinsufficiency. RPSA encodes ribosomal protein SA, a component of the small subunit of the ribosome. This discovery establishes an essential role for RPSA in human spleen development.


Asunto(s)
Haploinsuficiencia , Síndrome de Heterotaxia/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Bazo/anomalías , Análisis Mutacional de ADN , Sitios Genéticos , Humanos , Mutación , Linaje , Penetrancia , Bazo/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA