Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 51(20): 10955-65, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23013596

RESUMEN

The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 K

2.
Inorg Chem ; 50(6): 2112-24, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21332211

RESUMEN

Density functional theory (DFT) and the valence bond configuration interaction (VBCI) model have been applied to the oximato-based Mn(III)(3)O single-molecule magnets (SMMs), allowing one to correlate the Mn(III)-Mn(III) exchange coupling energy (J) with the bridging geometry in terms of two structural angles: the Mn-O-N-Mn torsion angle (γ) and the Mn(3) out-of-plane shift of O (angle δθ). Using DFT, a two-dimensional (γ, δθ) energy surface of J is derived and shown to yield essentially good agreement with the reported J values deduced from magnetic susceptibility data on trigonal oximato-bridged Mn(3) SMMs. VBCI is used to understand and analyze the DFT results. It is shown that the exchange coupling in these systems is governed by a spin-polarization mechanism inducing a pronounced and dominating ferromagnetic exchange via the oximato bridge as opposed to kinetic exchange, which favors a weaker and antiferromagnetic exchange via the bridging oxide. In the light of these results, a discussion of the exchange coupling in the Mn(6) family of the SMM with a record demagnetization barrier is given.

3.
J Phys Condens Matter ; 32(37): 374007, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050188

RESUMEN

It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the [Formula: see text] point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)[Formula: see text]D2O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at [Formula: see text] evolves up to finite temperatures [Formula: see text]. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and that it is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the [Formula: see text] anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. In the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated.

4.
Nat Phys ; 11(1): 62-68, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25729400

RESUMEN

Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.

5.
Inorg Chem ; 40(22): 5497-506, 2001 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-11599947

RESUMEN

Magnetization and electronic Raman data are presented for salts of the type Cs[Ga:Ti](SO(4))(2) x 12H(2)O, which enable a very precise definition of the electronic structure of the [Ti(OH(2))(6)](3+) cation. The magnetization data exhibit a spectacular deviation from Brillouin behavior, with the magnetic moment highly dependent on the strength of the applied field at a given ratio of B/T. This arises from unprecedented higher-order contributions to the magnetization, and these measurements afford the determination of the ground-state Zeeman coefficients to third-order. The anomalous magnetic behavior is a manifestation of Jahn-Teller coupling, giving rise to low-lying vibronic states, which mix into the ground state through the magnetic field. Electronic Raman measurements of the 1%-titanium(III)-doped sample identify the first vibronic excitation at approximately 18 cm(-1), which betokens a substantial quenching of spin-orbit coupling by the vibronic interaction. The ground-state Zeeman coefficients are strongly dependent on the concentration of titanium(III) in the crystals, and this can be modeled as a function of one parameter, representing the degree of strain induced by the cooperative Jahn-Teller effect. This study clearly demonstrates the importance that the Jahn-Teller effect can have in governing the magnetic properties of transition metal complexes with orbital triplet ground terms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA