Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 17(5): e1009599, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34043740

RESUMEN

Antiviral therapeutics are a front-line defense against virally induced diseases. Because viruses frequently mutate to escape direct inhibition of viral proteins, there is interest in targeting the host proteins that the virus must co-opt to complete its replication cycle. However, a detailed understanding of the interactions between the virus and the host cell is necessary in order to facilitate development of host-directed therapeutics. As a first step, we performed a genome-wide loss of function screen using the alphacoronavirus HCoV-229E to better define the interactions between coronaviruses and host factors. We report the identification and validation of an ER-resident host protein, TMEM41B, as an essential host factor for not only HCoV-229E but also genetically distinct coronaviruses including the pandemic betacoronavirus SARS-CoV-2. We show that the protein is required at an early, but post-receptor engagement, stage of the viral lifecycle. Further, mechanistic studies revealed that although the protein was not enriched at replication complexes, it likely contributes to viral replication complex formation via mobilization of cholesterol and other lipids to facilitate host membrane expansion and curvature. Continued study of TMEM41B and the development of approaches to prevent its function may lead to broad spectrum anti-coronavirus therapeutics.


Asunto(s)
Coronavirus Humano 229E/efectos de los fármacos , Interacciones Microbiota-Huesped/fisiología , Proteínas de la Membrana/metabolismo , Animales , Antivirales/farmacología , COVID-19/metabolismo , Línea Celular , Chlorocebus aethiops , Coronavirus Humano 229E/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Interacciones Microbiota-Huesped/genética , Humanos , Proteínas de la Membrana/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células Vero , Replicación Viral/efectos de los fármacos
2.
J Bacteriol ; 201(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30692176

RESUMEN

In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.


Asunto(s)
Evolución Biológica , Escherichia coli/genética , Escherichia coli/efectos de la radiación , Tolerancia a Radiación , Radiación Ionizante , Selección Genética , Análisis Mutacional de ADN , Enzimas Reparadoras del ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Deinococcus/crecimiento & desarrollo , Deinococcus/efectos de la radiación , Escherichia coli/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
3.
Curr Opin Virol ; 53: 101198, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35030353

RESUMEN

Influenza viruses are simultaneously supported and antagonized by factors within the host cell. This close relationship is the theoretical basis for future antivirals that target the host rather than the virus itself, a concept termed host-directed therapeutics. Genetic screening has led to the identification of host factors capable of modulating influenza virus infections, and these factors represent candidate targets for host-directed antiviral strategies. Despite advances in understanding host targets, however, there are currently no host-directed interventions for influenza viruses in clinical use. In this brief review, we discuss some host factors identified in knockout/knockdown and overexpression screens that could potentially be targeted as host-directed influenza intervention strategies. We further comment on the feasibility of changing gene expression in the respiratory tract with RNA delivery vectors and transient CRISPR-mediated gene targeting.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Antivirales/uso terapéutico , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico
4.
Cell Rep ; 41(4): 111540, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36243002

RESUMEN

The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.


Asunto(s)
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Línea Celular Tumoral , Proteínas de Unión al ADN , Factores de Transcripción/genética , Homeostasis
5.
Nat Commun ; 13(1): 6456, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309510

RESUMEN

Communicable respiratory viral infections pose both epidemic and pandemic threats and broad-spectrum antiviral strategies could improve preparedness for these events. To discover host antiviral restriction factors that may act as suitable targets for the development of host-directed antiviral therapies, we here conduct a whole-genome CRISPR activation screen with influenza B virus (IBV). A top hit from our screen, beta-1,3-glucuronyltransferase 1 (B3GAT1), effectively blocks IBV infection. Subsequent studies reveal that B3GAT1 activity prevents cell surface sialic acid expression. Due to this mechanism of action, B3GAT1 expression broadly restricts infection with viruses that require sialic acid for entry, including Victoria and Yamagata lineage IBVs, H1N1/H3N2 influenza A viruses (IAVs), and the unrelated enterovirus D68. To understand the potential utility of B3GAT1 induction as an antiviral strategy in vivo, we specifically express B3GAT1 in the murine respiratory epithelium and find that overexpression is not only well-tolerated, but also protects female mice from a lethal viral challenge with multiple influenza viruses, including a pandemic-like H1N1 IAV. Thus, B3GAT1 may represent a host-directed broad-spectrum antiviral target with utility against clinically relevant respiratory viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Femenino , Ratones , Animales , Humanos , Subtipo H3N2 del Virus de la Influenza A , Ácido N-Acetilneuramínico , Virus de la Influenza B , Antivirales/farmacología , Polisacáridos , Glucuronosiltransferasa
6.
Sci Signal ; 15(757): eabm0808, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36282911

RESUMEN

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Fosforilación , Glucógeno Sintasa Quinasa 3/metabolismo , Replicación Viral , Proteínas de la Nucleocápside/metabolismo , Nucleocápside/metabolismo , Serina/metabolismo , Treonina/metabolismo , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinasas
7.
mBio ; 12(2)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849973

RESUMEN

Enteroviruses (EV) deploy two proteases that mediate viral polyprotein cleavage and host cell manipulation. Here, we report that EV 2A proteases cleave all three members of the YTHDF protein family, cytosolic N6-methyladenosine (m6A) "readers" that regulate target mRNA fate. YTHDF protein cleavage occurs very early during infection, before viral translation is detected or cytopathogenic effects are observed. Preemptive YTHDF protein depletion enhanced viral translation and replication but only in cells with restrained viral translation, signs of inefficient 2A protease activity, and protective innate host immune responses. This effect corresponded with repression of interferon (IFN)-stimulated gene (ISG) induction, while type I/III IFN production was not significantly altered. Moreover, YTHDF3 depletion impaired JAK/STAT signaling in cells treated with type I, but not type II, IFN. YTHDF3 depletion's stimulatory effect on viral dynamics was dampened by JAK/STAT blockade and enhanced by type I IFN pretreatment of cells. We propose that EV 2A proteases cleave YTHDF proteins to antagonize ISG induction in infected cells.IMPORTANCE It is believed that ∼7,000 messenger RNAs (mRNAs) are subject to N6-methyladenosine modification. The biological significance of this remains mysterious. The YTHDF m6A readers are three related proteins with high affinity for m6A-modified mRNA, yet their biological functions remain obscure. We discovered that polio/enteroviruses elicit very early proteolysis of YTHDF1 to 3 in infected cells. Our research demonstrates that YTHDF3 acts as a positive regulator of antiviral JAK/STAT signaling in response to positive single-strand RNA virus infection, enabling type I interferon (IFN)-mediated gene regulatory programs to unfurl in infected cells. Our observation of viral degradation of the YTHDF proteins demonstrates that they are key response modifiers in the innate antiviral immune response.


Asunto(s)
Enterovirus/genética , Interferón Tipo I/metabolismo , Quinasas Janus/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Virales/metabolismo , Línea Celular , Enterovirus/enzimología , Células HeLa , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Quinasas Janus/genética , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Factores de Transcripción STAT/genética , Proteínas Virales/genética
8.
Front Microbiol ; 11: 582590, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072055

RESUMEN

Ionizing radiation (IR) is lethal to most organisms at high doses, damaging every cellular macromolecule via induction of reactive oxygen species (ROS). Utilizing experimental evolution and continuing previous work, we have generated the most IR-resistant Escherichia coli populations developed to date. After 100 cycles of selection, the dose required to kill 99% the four replicate populations (IR9-100, IR10-100, IR11-100, and IR12-100) has increased from 750 Gy to approximately 3,000 Gy. Fitness trade-offs, specialization, and clonal interference are evident. Long-lived competing sub-populations are present in three of the four lineages. In IR9, one lineage accumulates the heme precursor, porphyrin, leading to generation of yellow-brown colonies. Major genomic alterations are present. IR9 and IR10 exhibit major deletions and/or duplications proximal to the chromosome replication terminus. Contributions to IR resistance have expanded beyond the alterations in DNA repair systems documented previously. Variants of proteins involved in ATP synthesis (AtpA), iron-sulfur cluster biogenesis (SufD) and cadaverine synthesis (CadA) each contribute to IR resistance in IR9-100. Major genomic and physiological changes are emerging. An isolate from IR10 exhibits protein protection from ROS similar to the extremely radiation resistant bacterium Deinococcus radiodurans, without evident changes in cellular metal homeostasis. Selection is continuing with no limit to IR resistance in evidence as our E. coli populations approach levels of IR resistance typical of D. radiodurans.

10.
bioRxiv ; 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817937

RESUMEN

While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality. In order to understand how targeting kinases could be used to compromise viral replication, we used a combination of phosphoproteomics and bioinformatics as well as genetic and pharmacological kinase inhibition to define the enzymes important for SARS-CoV-2 N protein phosphorylation and viral replication. From these data, we propose a model whereby SRPK1/2 initiates phosphorylation of the N protein, which primes for further phosphorylation by GSK-3a/b and CK1 to achieve extensive phosphorylation of the N protein SR-rich domain. Importantly, we were able to leverage our data to identify an FDA-approved kinase inhibitor, Alectinib, that suppresses N phosphorylation by SRPK1/2 and limits SARS-CoV-2 replication. Together, these data suggest that repurposing or developing novel host-kinase directed therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.

11.
PLoS One ; 14(1): e0199482, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673695

RESUMEN

We have previously generated four replicate populations of ionizing radiation (IR)-resistant Escherichia coli though directed evolution. Sequencing of isolates from these populations revealed that mutations affecting DNA repair (through DNA double-strand break repair and replication restart), ROS amelioration, and cell wall metabolism were prominent. Three mutations involved in DNA repair explained the IR resistance phenotype in one population, and similar DNA repair mutations were prominent in two others. The remaining population, IR-3-20, had no mutations in the key DNA repair proteins, suggesting that it had taken a different evolutionary path to IR resistance. Here, we present evidence that a variant of the anaerobic metabolism transcription factor FNR, unique to and isolated from population IR-3-20, plays a role in IR resistance. The F186I allele of FNR exhibits a diminished ability to activate transcription from FNR-activatable promoters, and furthermore reduces levels of intracellular ROS. The FNR F186I variant is apparently capable of enhancing resistance to IR under chronic irradiation conditions, but does not increase cell survival when exposed to acute irradiation. Our results underline the importance of dose rate on cell survival of IR exposure.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Proteínas Hierro-Azufre/metabolismo , Mutación Missense , Regiones Promotoras Genéticas , Tolerancia a Radiación , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA