Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 257(Pt 2): 128790, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101659

RESUMEN

Acacia catechu contains polyphenolic compounds such as catechin and tannins, which exhibit antioxidant and antimicrobial properties that have the potential to be used in food packaging applications. In this study, chitosan-based (CH) antioxidant films were developed with the incorporation of calcium carbonate (CC) and Acacia catechu (CT). The films were fabricated by the solvent-casting method, and the effects of the different concentrations of Acacia catechu were analyzed. The physicomechanical, antioxidant, and UV shielding properties of the films were determined. The addition of Acacia catechu and calcium carbonate has significantly increased the tensile from 2.30 MPa to 4.95 MPa, respectively, for neat CH and CH/CC/CT-4 film. At the same time, there is a reduction in the elongation at break from 26.75 % in neat CH film to 12.11 % in CH/CC/CT-4 film. The CH/CC/CT-4 film has shown the highest ferric-reducing antioxidant power (FRAP) of 0.440 mg Trolox/g dried weight of the film and 2,2 diphenyl picrylhydrazyl (DPPH) radical scavenging activity of 93.05 %. The UV transmittance of CH/CC/CT-4 film was 0.46 %, the lowest compared to the rest of the fabricated films. These active properties depict that CH/CC/CT-4 film has the potential to be utilized for the packaging of light and oxygen-sensitive food products.


Asunto(s)
Acacia , Antiinfecciosos , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Embalaje de Alimentos/métodos , Antiinfecciosos/farmacología
2.
Foods ; 12(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959130

RESUMEN

Food spoilage is one of the key concerns in the food industry. One approach is the improvement of the shelf life of the food by introducing active packaging, and another is intelligent packaging. Detecting packed food spoilage in real-time is key to stopping outbreaks caused by food-borne diseases. Using active materials in packaging can improve shelf life, while the nonharmful color indicator can be useful to trace the quality of the food through simple color detection. Recently, bio-derived active and intelligent packaging has gained a lot of interest from researchers and consumers. For this, the biopolymers and the bioactive natural ingredient are used as indicators to fabricate active packaging material and color-changing sensors that can improve the shelf life and detect the freshness of food in real-time, respectively. Among natural bioactive components, carotenoids are known for their good antimicrobial, antioxidant, and pH-responsive color-indicating properties. Carotenoids are rich in fruits and vegetables and fat-soluble pigments. Including carotenoids in the packaging system improves the film's physical and functional performance. The recent progress on carotenoid pigment-based packaging (active and intelligent) is discussed in this review. The sources and biological activity of the carotenoids are briefly discussed, and then the fabrication and application of carotenoid-activated packaging film are reviewed. The carotenoids-based packaging film can enhance packaged food's shelf life and indicate the freshness of meat and vegetables in real-time. Therefore, incorporating carotenoid-based pigment into the polymer matrix could be promising for developing novel packaging materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA