Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(6): 877-887, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38977307

RESUMEN

The zoonotic parasite Cryptosporidium parvum is a global cause of gastrointestinal disease in humans and ruminants. Sequence analysis of the highly polymorphic gp60 gene enabled the classification of C. parvum isolates into multiple groups (e.g., IIa, IIc, Id) and a large number of subtypes. In Europe, subtype IIaA15G2R1 is largely predominant and has been associated with many water- and food-borne outbreaks. In this study, we generated new whole-genome sequence (WGS) data from 123 human- and ruminant-derived isolates collected in 13 European countries and included other available WGS data from Europe, Egypt, China, and the United States (n = 72) in the largest comparative genomics study to date. We applied rigorous filters to exclude mixed infections and analyzed a data set from 141 isolates from the zoonotic groups IIa (n = 119) and IId (n = 22). Based on 28,047 high-quality, biallelic genomic SNPs, we identified three distinct and strongly supported populations: Isolates from China (IId) and Egypt (IIa and IId) formed population 1; a minority of European isolates (IIa and IId) formed population 2; and the majority of European (IIa, including all IIaA15G2R1 isolates) and all isolates from the United States (IIa) clustered in population 3. Based on analyses of the population structure, population genetics, and recombination, we show that population 3 has recently emerged and expanded throughout Europe to then, possibly from the United Kingdom, reach the United States, where it also expanded. The reason(s) for the successful spread of population 3 remain elusive, although genes under selective pressure uniquely in this population were identified.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Brotes de Enfermedades , Cryptosporidium parvum/genética , Estados Unidos/epidemiología , Europa (Continente)/epidemiología , Humanos , Criptosporidiosis/parasitología , Criptosporidiosis/epidemiología , Animales , Genómica/métodos , Polimorfismo de Nucleótido Simple , Filogenia , Secuenciación Completa del Genoma/métodos , Genoma de Protozoos , China/epidemiología , Egipto/epidemiología
2.
Genome Res ; 31(5): 852-865, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33906963

RESUMEN

Mitochondrial genome content and structure vary widely across the eukaryotic tree of life, with protists displaying extreme examples. Apicomplexan and dinoflagellate protists have evolved highly reduced mitochondrial genome sequences, mtDNA, consisting of only three cytochrome genes and fragmented rRNA genes. Here, we report the independent evolution of fragmented cytochrome genes in Toxoplasma and related tissue coccidia and evolution of a novel genome architecture consisting minimally of 21 sequence blocks (SBs) totaling 5.9 kb that exist as nonrandom concatemers. Single-molecule Nanopore reads consisting entirely of SBs ranging from 0.1 to 23.6 kb reveal both whole and fragmented cytochrome genes. Full-length cytochrome transcripts including a divergent coxIII are detected. The topology of the mitochondrial genome remains an enigma. Analysis of a cob point mutation reveals that homoplasmy of SBs is maintained. Tissue coccidia are important pathogens of man and animals, and the mitochondrion represents an important therapeutic target. The mtDNA sequence has been elucidated, but a definitive genome architecture remains elusive.


Asunto(s)
Coccidios , Genoma Mitocondrial , Toxoplasma , Animales , Coccidios/genética , ADN Mitocondrial/genética , Eucariontes/genética , Humanos , Toxoplasma/genética
3.
BMC Infect Dis ; 24(1): 146, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291399

RESUMEN

BACKGROUND: The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. A national microbiological surveillance programme was implemented in Sweden in 2018 in order to increase knowledge of the molecular epidemiology of human cryptosporidiosis to better understand transmission patterns and potential zoonotic sources. This article summarises the results of the first five years of the surveillance programme. METHODS: Cryptosporidium-positive faecal and DNA samples from domestically acquired infections were collected from clinical microbiological laboratories in Sweden. Species and subtype determination was performed using 60 kDa glycoprotein and/or small subunit ribosomal RNA gene analysis. RESULTS: Between 2018 and 2022, 1654 samples were analysed and 11 different species were identified: C. parvum (n = 1412), C. mortiferum (n = 59), C. hominis (n = 56), C. erinacei (n = 11), C. cuniculus (n = 5), C. meleagridis (n = 3), C. equi (n = 2), C. ubiquitum (n = 2), and one each of C. canis, C. ditrichi and C. felis. Subtyping revealed seven subtype families of C. parvum (new subtype families IIy and IIz) and 69 different subtypes (11 new subtypes). The most common C. parvum subtypes were IIdA22G1c, IIdA24G1, IIdA15G2R1 and IIaA16G1R1b. For C. hominis, four different subtype families and nine different subtypes (two new subtypes) were identified. For additional species, two new subtype families (IIIk and VId) and nine new subtypes were identified. All successfully subtyped C. mortiferum cases were subtype XIVaA20G2T1, confirming previous findings in Sweden. Several outbreaks were identified of which the majority were foodborne and a few were due to direct contact with infected animals. CONCLUSION: Infection with C. parvum is the leading cause of human cryptosporidiosis acquired in Sweden, where more than 90% of domestic cases are caused by this zoonotic species and only a small proportion of cases are due to infection with other species. The rodent-associated C. mortiferum is considered an emerging zoonotic species in Sweden and the number of domestically acquired human cases has surpassed that of infection with C. hominis. A high diversity of species and subtypes, as well as diversity within the same subtype, was detected. Also, cryptosporidiosis appears to affect adults to a great extent in Sweden.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Animales , Adulto , Humanos , Cryptosporidium/genética , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Suecia/epidemiología , Genotipo , Análisis de Secuencia de ADN , ADN Protozoario/genética , Heces/parasitología
4.
J Infect Dis ; 225(4): 686-695, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34417806

RESUMEN

BACKGROUND: Cryptosporidiosis is a parasitic disease associated with potentially fatal diarrhea. The most used method in Cryptosporidium subtyping is based on the glycoprotein gene gp60. Each infection can represent a parasite population, and it is important to investigate the influence on transmission and virulence, as well as any impact on public health investigations. However, an easy-to-use method for detection is lacking. METHODS: Here we report on the use of the bioinformatic program TIDE for deconvolution of gp60 chromatograms. A combination of single oocyst analysis and cloning successfully confirmed the within-sample parasite population diversity. Retrospective sample analysis was conducted on archived chromatograms. RESULTS: For Cryptosporidium parvum, 8.6% multistrain infections (13 of 152) obscured by currently used consensus base calling were detected. Importantly, we show that single oocysts can harbor a mixed population of sporozoites. We also identified a striking dominance of unappreciated polymerase stutter artefacts in all 218 chromatograms analyzed, challenging the uncritical use of gp60 typing. CONCLUSIONS: We demonstrate the value of a new, easy-to-use analytical procedure for critical characterization of C. parvum and Cryptosporidium hominis in epidemiological investigations, also applicable retrospectively. Our findings illuminate the hidden parasite diversity with important implications for tracing zoonotic and person-to-person transmissions.


Asunto(s)
Coinfección , Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Criptosporidiosis/parasitología , Cryptosporidium/genética , Cryptosporidium parvum/genética , ADN Protozoario/genética , Heces/parasitología , Genotipo , Humanos , Oocistos , Estudios Retrospectivos
5.
J Water Health ; 20(4): 641-656, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35482381

RESUMEN

South African rivers generally receive waste from inadequate wastewater infrastructure, mines, and farming activities, among others. The uMsunduzi River in KwaZulu-Natal, South Africa, is among these recipients with recorded poor to very poor water quality. To identify parts of the uMsunduzi River that are polluted by Cryptosporidium and Escherichia coli (E. coli), this study mapped out pollutants emanating from point and non-point sources using the Soil and Water Assessment Tool (SWAT). Streamflow calibration in the upper and lower reaches of the catchment showed good performance with R2 of 0.64 and 0.58, respectively. SWAT water quality output data were combined with a Quantitative Microbial Risk Assessment (QMRA) to understand the microbial health implications for people using river water for drinking, recreational swimming, and non-competitive canoeing. QMRA results for Cryptosporidium and pathogenic E. coli showed that the probability of infection for most users exceeds the acceptable level for drinking and recreation as outlined in the South African water quality guidelines, and by the World Health Organization (WHO). The results of this study can be used as a baseline to assess the economic and health implications of different management plans, resulting in better-informed, cost-effective, and impactful decision-making.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Escherichia coli , Humanos , Medición de Riesgo , Ríos/química , Sudáfrica , Calidad del Agua
6.
BMC Genomics ; 22(1): 660, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521339

RESUMEN

BACKGROUND: Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS: Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS: The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Coccidiosis/genética , Coccidiosis/veterinaria , Eimeria tenella/genética , Perfilación de la Expresión Génica , Enfermedades de las Aves de Corral/genética , RNA-Seq
7.
BMC Microbiol ; 21(1): 212, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34266385

RESUMEN

BACKGROUND: A high carriage rate of methicillin-resistant Staphylococcus aureus with the mecC gene (mecC-MRSA) has been described among Wild European hedgehogs (Europeaus erineaus). Due to this frequent occurrence, it has been suggested that hedgehogs could be a natural reservoir for mecC-MRSA. However, the reason why hedgehogs carry mecC-MRSA remains unknown, but it has been hypothesized that mecC-MRSA could have evolved on the skin of hedgehogs due to the co-occurrence with antibiotic producing dermatophytes. The aim of this pilot-study was therefore to investigate if hedgehogs in Sweden carry Trichophyton spp. and to provide evidence that these dermatophytes are able to produce penicillin or similar substances. In addition, the study aimed to identify if dermatophytes co-occurred with mecC-MRSA. METHODS: Samples were collected from hedgehogs (Europeaus erineaus) that were euthanized or died of natural causes. All samples were screened for dermatophytes and mecC-MRSA using selective cultivation methods. Suspected isolates were characterized using PCR-based methods, genome sequencing and bioinformatic analyses. Identification of penicillin was performed by ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS: In total 23 hedgehogs were investigated, and it was shown that two carried Trichophyton erinacei producing benzyl-penicillin, and that these hedgehogs also carried mecC-MRSA. The study also showed that 60% of the hedgehogs carried mecC-MRSA. CONCLUSION: The pilot-study demonstrated that Trichophyton erinacei, isolated from Swedish hedgehogs, can produce benzylpenicillin and that these benzylpenicillin-producing T. erinacei co-occurred with mecC-MRSA. The study also reconfirmed the high occurrence of mecC-MRSA among hedgehogs.


Asunto(s)
Arthrodermataceae/fisiología , Erizos/microbiología , Animales , Arthrodermataceae/genética , Arthrodermataceae/aislamiento & purificación , Dermatomicosis/complicaciones , Dermatomicosis/epidemiología , Dermatomicosis/microbiología , Genes Bacterianos/genética , Genoma Bacteriano/genética , Staphylococcus aureus Resistente a Meticilina/genética , Penicilina G/aislamiento & purificación , Proyectos Piloto , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Suecia/epidemiología
8.
Parasitology ; 148(6): 712-725, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33536090

RESUMEN

The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2­4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.


Asunto(s)
Eimeria tenella/fisiología , Macrófagos/parasitología , RNA-Seq/métodos , Animales , Línea Celular , Pollos , Eimeria tenella/genética , Eimeria tenella/inmunología , Eimeria tenella/aislamiento & purificación , Expresión Génica , Interacciones Huésped-Patógeno , Macrófagos/inmunología , ARN Protozoario/química , ARN Protozoario/aislamiento & purificación , Transcripción Genética
9.
Exp Parasitol ; 211: 107863, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32088148

RESUMEN

Foodborne parasites with zoonotic potential are of particular concern for human health, being responsible for serious and potentially life threatening diseases. In the last decades, the development of molecular biology techniques have been successfully implemented for clinical diagnosis of FBPs in animal or human samples providing cheaper, less labor intensive, reliable and more sensitive tests. It is apparent from recent publications that unsubstantiated molecular methods for parasite detection that have undergone scant evaluation for sensitivity and specificity are becoming increasingly common. The aim of the organized Training Schools was to transfer knowledge on application, optimization and troubleshooting for methods used to extract, amplify, and sequence nucleic acids from contaminated matrices and isolated FBPs. The organized Training Schools fulfilled the trainees' expectations, whom acquired useful knowledge for their research activities.

10.
J Clin Microbiol ; 55(3): 844-858, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28003424

RESUMEN

In order to improve genotyping and epidemiological analysis of Cryptosporidium spp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 different Cryptosporidium hominis patient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encoding Cryptosporidium oocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to the Cryptosporidium parvum reference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in the C. hominis tree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencing Cryptosporidium directly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes of Cryptosporidium from human fecal samples, while alluding to the potential for a higher degree of genotyping within Cryptosporidium epidemiology.


Asunto(s)
Criptosporidiosis/parasitología , Cryptosporidium/clasificación , Cryptosporidium/genética , Heces/parasitología , Variación Genética , Genotipo , Cryptosporidium/aislamiento & purificación , Genoma de Protozoos , Genómica , Humanos , Iowa , Carga de Parásitos , Filogenia , Análisis de Secuencia de ADN , Sintenía
11.
BMC Genomics ; 17: 471, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27338614

RESUMEN

BACKGROUND: Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. RESULTS: Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. CONCLUSIONS: As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units.


Asunto(s)
Cryptosporidium/genética , Eucariontes/genética , Genoma , Genómica , Alelos , Variación Genética , Genómica/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Oocistos , Polimorfismo de Nucleótido Simple
12.
Parasitol Res ; 115(6): 2485-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26987642

RESUMEN

Fresh fruit, vegetables, mushrooms, and other fresh produce are recognised as important vehicles of infection for several foodborne parasites, particularly those with a faecal-oral transmission route and robust environmental transmission stages. Nevertheless, analysis of such foods for parasite transmission stages, even during outbreaks, tends to show only low contamination. Echinococcus multilocularis is considered one of the most important foodborne parasites, but there are few studies in which fresh produce or like foods collected in their natural habitat is analysed for contamination with E. multilocularis eggs. In this article, we question a recent study from Poland reporting over 23 % of fresh berries, vegetables, and mushroom being highly contaminated with E. multilocularis eggs. In particular, it appears unlikely that 20 % of raspberries, which are elevated from ground level, should be exposed to faecal contamination. Additionally, the similar egg contamination of vegetation in forest and plantation environments is surprising considering the preference of the parasite's most competent intermediate hosts for the latter environment. Furthermore, a lack of specific temporal information is concerning due to the varying infection pressure (and therefore environmental contamination) occurring in definitive hosts over the course of the year. Several important aspects of the study seem to us to have been neglected, and we are concerned that the published data might, if not questioned, lead to incorrect interpretation, and unnecessary losses in the agricultural sector.


Asunto(s)
Equinococosis/epidemiología , Equinococosis/transmisión , Echinococcus multilocularis/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/parasitología , Frutas/parasitología , Verduras/parasitología , Agaricales , Animales , Europa (Continente) , Heces/parasitología , Zorros/parasitología , Polonia
13.
Exp Parasitol ; 154: 25-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25825252

RESUMEN

The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest. Active DNA replication coupled to DNA repair could be an explanation to why UV light does not kill trophozoites and encysting cells as efficiently as the non-replicating cysts. We also examined UV-induced gene expression responses in both trophozoites and cysts using RNA sequencing (RNA seq). UV radiation induces small overall changes in gene expression in Giardia but cysts show a stronger response than trophozoites. Heat shock proteins, kinesins and Nek kinases are up-regulated, whereas alpha-giardins and histones are down-regulated in UV treated trophozoites. Expression of variable surface proteins (VSPs) is changed in both trophozoites and cysts. Our data show that Giardia cysts have limited ability to repair UV-induced damage and this may have implications for drinking- and waste-water treatment when setting criteria for the use of UV disinfection to ensure safe water.


Asunto(s)
Replicación del ADN/efectos de la radiación , ADN Protozoario/efectos de la radiación , Giardia lamblia/efectos de la radiación , Rayos Ultravioleta , Animales , Secuencia de Bases/efectos de la radiación , Bilis/parasitología , Bovinos , Análisis por Conglomerados , Daño del ADN/efectos de la radiación , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica/efectos de la radiación , Giardia lamblia/genética , Histonas/metabolismo , Fosforilación , ARN Protozoario/aislamiento & purificación , ARN Protozoario/efectos de la radiación , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/efectos de la radiación
14.
Vet Parasitol Reg Stud Reports ; 28: 100677, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115117

RESUMEN

The epidemiology of Cryptosporidium spp. in Latvia was investigated by testing fecal samples from 926 animals aged from one day to 24 years for the presence of Cryptosporidium spp. oocysts. The samples were collected from 87 cattle farms and from four slaughterhouses, and analyzed by conventional and fluorescent microscopy, followed by Cryptosporidium species and C. parvum subtype differentiation. Moreover, using a questionnaire, we surveyed factors that could be relevant as risk factors of Cryptosporidium spp. infection on the farms. Cryptosporidium spp. were shed by 33.8% of the investigated cattle and at least one shedding animal was found on 77.8% of the farms. In the present study, all four Cryptosporidium species reported to commonly infect cattle and two additional Cryptosporidium species (C. scrofarum and C. ubiquitum) were identified. In addition, mix infections of C. parvum/C. bovis, C. bovis/C. ryanae, C. parvum/C. ryanae, C. parvum/C. andersoni and C. bovis/C. andersoni were observed. C. parvum and C. bovis was mostly prevalent in young animals (0-3 months old) and in addition, diarrhea associated with C. parvum infection was observed only in very young animals. Cryptosporidium andersoni and C. ryanae in age group 0-3 months was observed in low prevalence, while a higher proportion of animals with diarrhea associated with C. andersoni infection was observed in very young animals and with C. ryanae in animals age group 4-24 months. Eight previously described C. parvum subtypes were observed. The majority of the subtypes were in the IIa subtype family, while one subtype was identified from the IId subtype family. The most common subtype was IIaA15G2R1, which was found in 34.2% of the C. parvum successfully subtyped samples. The probability of Cryptosporidium spp. associated diarrhea in cattle decreased significantly with the age of the animals and a prolonged period during which calves were fed with milk.


Asunto(s)
Enfermedades de los Bovinos , Criptosporidiosis , Cryptosporidium , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Letonia/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , Factores de Riesgo
15.
Parasit Vectors ; 15(1): 489, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572928

RESUMEN

BACKGROUND: The flagellated parasite Giardia duodenalis is a major and global cause of diarrhoeal disease. Eight genetically very distinct groups, known as assemblages A to H, have been recognized in the G. duodenalis species complex, two of which (assemblages A and B) infect humans and other mammalian hosts. Informative typing schemes are essential to understand transmission pathways, characterize outbreaks and trace zoonotic transmission. In this study, we evaluated a published multi-locus sequence typing (MLST) scheme for G. duodenalis assemblage A, which is based on six polymorphic markers. METHODS: We genotyped 60 human-derived and 11 animal-derived G. duodenalis isolates collected in Europe and on other continents based on the published protocol. After retrieving previously published genotyping data and excluding isolates whose sequences showed allelic sequence heterozygosity, we analysed a dataset comprising 146 isolates. RESULTS: We identified novel variants at five of the six markers and identified 78 distinct MLST types in the overall dataset. Phylogenetic interpretation of typing data confirmed that sub-assemblage AII only comprises human-derived isolates, whereas sub-assemblage AI comprises all animal-derived isolates and a few human-derived isolates, suggesting limited zoonotic transmission. Within sub-assemblage AII, isolates from two outbreaks, which occurred in Sweden and Italy, respectively, had unique and distinct MLST types. Population genetic analysis showed a lack of clustering by geographical origin of the isolates. CONCLUSION: The MLST scheme evaluated provides sufficient discriminatory power for epidemiological studies of G. duodenalis assemblage A.


Asunto(s)
Giardia lamblia , Giardiasis , Animales , Humanos , Giardiasis/parasitología , Tipificación de Secuencias Multilocus , Filogenia , Genotipo , Heces/parasitología , Mamíferos/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-35284887

RESUMEN

Sarcoptic mange caused by Sarcoptes scabiei has been present in the Swedish red fox (Vulpes vulpes) population since the 1970s. The disease has been described in other Swedish wildlife species, but not in the wild boar, Sus scrofa, until 2009. Single cases of sarcoptic mange have been diagnosed the last years in the expanding population of wild boar. This study aims to describe the histopathological lesions found on mangy wild boar and compare, by molecular methods, mites from wild boar cases with mites from mangy red foxes, raccoon dogs, and domestic pigs. Mangy wild boar with focal alopecia and clinical signs of pruritis were reported or submitted from various areas in southern Sweden to the National Veterinary Institute, Uppsala. The examined skin samples of wild boar infected with S. scabiei showed limited gross skin lesions, except for cases with severe exudative dermatitis. Histopathology of the affected wild boar skin samples showed an eosinophilic dermatitis with a variable hyperkeratosis and often low number of mites present. To study the relationship of S. scabiei mites isolated from different host species, a population genetics investigation was performed based on microsatellite markers. In total, 225 individual mites from eight individuals of four different host species; red fox (48 mites), wild boar (80 mites), domestic pig (48 mites) and raccoon dog (43 mites), were included in the study. In the phylogenetic analysis, all mites isolated from wild boar clustered together even though they originate from different geographical regions in Sweden. Mites from each individual host showed high similarity. The results indicate that wild boar mites differ from mites both from the red fox, raccoon dog, and domestic pig.

17.
Food Waterborne Parasitol ; 23: e00115, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33748443

RESUMEN

Cryptosporidium is a protozoan parasite that is transmitted to both humans and animals through zoonotic or anthroponotic means. When a host is infected with this parasite, it causes a gastrointestinal disease known as cryptosporidiosis. To understand the transmission dynamics of Cryptosporidium, the small subunit (SSU or 18S) rRNA and gp60 genes are commonly studied through PCR analysis and conventional Sanger sequencing. However, analyzing sequence chromatograms manually is both time consuming and prone to human error, especially in the presence of poorly resolved, heterozygous peaks and the absence of a validated database. For this study, we developed a Cryptosporidium genotyping tool, called CryptoGenotyper, which has the capability to read raw Sanger sequencing data for the two common Cryptosporidium gene targets (SSU rRNA and gp60) and classify the sequence data into standard nomenclature. The CryptoGenotyper has the capacity to perform quality control and properly classify sequences using a high quality, manually curated reference database, saving users' time and removing bias during data analysis. The incorporated heterozygous base calling algorithms for the SSU rRNA gene target resolves double peaks, therefore recovering data previously classified as inconclusive. The CryptoGenotyper successfully genotyped 99.3% (428/431) and 95.1% (154/162) of SSU rRNA chromatograms containing single and mixed sequences, respectively, and correctly subtyped 95.6% (947/991) of gp60 chromatograms without manual intervention. This new, user-friendly tool can provide both fast and reproducible analyses of Sanger sequencing data for the two most common Cryptosporidium gene targets.

18.
Infect Genet Evol ; 92: 104895, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33971308

RESUMEN

Most cases of cryptosporidiosis in humans are caused by Cryptosporidium parvum or Cryptosporidium hominis. However, more uncommon species are increasingly being recognised to cause infection in humans. Here we report that Cryptosporidium chipmunk genotype I, which has various rodents as its natural host, is the third most common source of human cryptosporidiosis in Sweden. We also describe the first small outbreak of cryptosporidiosis caused by Cryptosporidium chipmunk genotype I and report the first case of zoonotic transmission of Cryptosporidium chipmunk genotype I from a red squirrel to a human. Cryptosporidium chipmunk genotype I was identified in 20 human cases, including 16 sporadic cases, three outbreak-related cases, and one zoonotic case, as well as in two squirrel samples. Gp60 subtyping which was successful for 19 human cases and two squirrel samples showed that all samples harboured the same subtype, XIVaA20G2T1. The work presented here suggests that red squirrel is a natural host of Cryptosporidium chipmunk genotype I and that infection with Cryptosporidium chipmunk genotype I is an emerging cause of domestic cryptosporidiosis in Sweden and a potential source of outbreaks.


Asunto(s)
Criptosporidiosis/epidemiología , Cryptosporidium/genética , Brotes de Enfermedades , Genotipo , Sciuridae , Zoonosis/epidemiología , Adolescente , Adulto , Anciano , Animales , Preescolar , Criptosporidiosis/parasitología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Suecia/epidemiología
19.
Parasite Epidemiol Control ; 13: e00205, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33665388

RESUMEN

In 2012, WHO/FAO ranked 24 foodborne parasites (FBP) using multicriteria decision analysis (MCDA) to provide risk assessors with a basis for prioritising control of highly ranked FBP on the global level. One conclusion was that ranking may differ substantially per region. In Europe, the same methodology was used to rank FBP of relevance for Europe. Of the 24 FBP, the top-five prioritised FBP were identified for Europe as Echinococcus multilocularis, Toxoplasma gondii, Trichinella spiralis, E. granulosus, and Cryptosporidium spp., all of which are zoonotic. The objective of the present study was to provide an overview of surveillance and reporting systems in Europe for these top five prioritised FBP in the human and animal populations, to identify gaps, and give recommendations for improvement. Information on the surveillance systems was collected from 35 European countries and analysed according to the five different regions. For most FBP, human surveillance is passive in most countries and regions in Europe and notification differs between countries and regions. Adequate surveillance programmes for these FBP are lacking, except for T. spiralis, which is notifiable in 34 countries with active surveillance in susceptible animals under EU directive. Although human and animal surveillance data are available for the five prioritised FBP, we identified a lack of consistency in surveillance and reporting requirements between national experts and European bodies. Recommendations for improved surveillance systems are discussed.

20.
BMC Genomics ; 11: 258, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20409319

RESUMEN

BACKGROUND: Microbial eukaryotes show large variations in genome structure and content between lineages, indicating extensive flexibility over evolutionary timescales. Here we address the tempo and mode of such changes within diplomonads, flagellated protists with two nuclei found in oxygen-poor environments. Approximately 5,000 expressed sequence tag (EST) sequences were generated from the fish commensal Spironucleus barkhanus and compared to sequences from the morphologically indistinguishable fish parasite Spironucleus salmonicida, and other diplomonads. The ESTs were complemented with sequence variation studies in selected genes and genome size determinations. RESULTS: Many genes detected in S. barkhanus and S. salmonicida are absent in the human parasite Giardia intestinalis, the most intensively studied diplomonad. For example, these fish diplomonads show an extended metabolic repertoire and are able to incorporate selenocysteine into proteins. The codon usage is altered in S. barkhanus compared to S. salmonicida. Sequence variations were found between individual S. barkhanus ESTs for many, but not all, protein coding genes. Conversely, no allelic variation was found in a previous genome survey of S. salmonicida. This difference was confirmed by sequencing of genomic DNA. Up to five alleles were identified for the cloned S. barkhanus genes, and at least nineteen highly expressed S. barkhanus genes are represented by more than four alleles in the EST dataset. This could be explained by the presence of a non-clonal S. barkhanus population in the culture, by a ploidy above four, or by duplications of parts of the genome. Indeed, genome size estimations using flow cytometry indicated similar haploid genome sizes in S. salmonicida and G. intestinalis (approximately 12 Mb), whereas the S. barkhanus genome is larger (approximately 18 Mb). CONCLUSIONS: This study indicates extensive divergent genome evolution within diplomonads. Genomic traits such as codon usage, frequency of allelic sequence variation, and genome size have changed considerably between S. barkhanus and S. salmonicida. These observations suggest that large genomic differences may accumulate in morphologically indistinguishable eukaryotic microbes.


Asunto(s)
Diplomonadida/clasificación , Diplomonadida/genética , Genoma , Secuencia de Aminoácidos , Animales , Diplomonadida/citología , Datos de Secuencia Molecular , Salmonidae/parasitología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA