Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 33(6): 857-871, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217254

RESUMEN

The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.


Asunto(s)
Metilación de ADN , Histonas , Humanos , Ratones , Animales , Histonas/genética , Histonas/metabolismo , Regiones Promotoras Genéticas , Cromatina/genética , Epigénesis Genética , Código de Histonas , Ratones Endogámicos , Expresión Génica
2.
Blood ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598841

RESUMEN

Intrinsic molecular programs and extrinsic factors including pro-inflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single cell transcriptomic profiles of hematopoietic and non-hematopoietic cell types in five young adult and nine middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated which extrinsic regulatory cell types and factors would predict variance in these signatures between individual middle-aged mice. Decline in signaling mediated by ADIPOQ, KITL and IGF1 from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated pro-inflammatory cytokines including IL1, IL6, TNF and RANTES. In sum, we find that Kitl and Igf1 expression are co-regulated and variable between individual mice at middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation.

3.
Blood ; 142(6): 533-542, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36800569

RESUMEN

With aging, hematopoietic stem cells (HSCs) have an impaired ability to regenerate, differentiate, and produce an entire repertoire of mature blood and immune cells. Owing to dysfunctional hematopoiesis, the incidence of hematologic malignancies increases among elderly individuals. Here, we provide an update on HSC-intrinsic and -extrinsic factors and processes that were recently discovered to contribute to the functional decline of HSCs during aging. In addition, we discuss the targets and timing of intervention approaches to maintain HSC function during aging and the extent to which these same targets may prevent or delay transformation to hematologic malignancies.


Asunto(s)
Neoplasias Hematológicas , Leucemia , Humanos , Anciano , Senescencia Celular , Envejecimiento , Células Madre Hematopoyéticas/fisiología , Leucemia/terapia , Hematopoyesis/fisiología , Neoplasias Hematológicas/terapia
4.
Genes Dev ; 26(4): 344-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22345515

RESUMEN

Epigenetic mechanisms regulating leukemia stem cells (LSCs) are an attractive target for therapy of blood cancers. Here, we report that conditional knockout of the DNA methyltransferase Dnmt1 blocked development of leukemia, and haploinsufficiency of Dnmt1 was sufficient to delay progression of leukemogenesis and impair LSC self-renewal without altering normal hematopoiesis. Haploinsufficiency of Dnmt1 resulted in tumor suppressor gene derepression associated with reduced DNA methylation and bivalent chromatin marks. These results suggest that LSCs depend on not only active expression of leukemogenic programs, but also DNA methylation-mediated silencing of bivalent domains to enforce transcriptional repression.


Asunto(s)
Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Haploinsuficiencia , Leucemia/enzimología , Células Madre Neoplásicas/enzimología , Animales , Metilación de ADN , Técnicas de Inactivación de Genes , Estimación de Kaplan-Meier , Leucemia/patología , Ratones , Células Madre Neoplásicas/citología , Proteínas Supresoras de Tumor/genética
6.
Proc Natl Acad Sci U S A ; 110(16): 6518-23, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23576758

RESUMEN

Reactivation of fetal hemoglobin (HbF) in adults ameliorates the severity of the common ß-globin disorders. The transcription factor BCL11A is a critical modulator of hemoglobin switching and HbF silencing, yet the molecular mechanism through which BCL11A coordinates the developmental switch is incompletely understood. Particularly, the identities of BCL11A cooperating protein complexes and their roles in HbF expression and erythroid development remain largely unknown. Here we determine the interacting partner proteins of BCL11A in erythroid cells by a proteomic screen. BCL11A is found within multiprotein complexes consisting of erythroid transcription factors, transcriptional corepressors, and chromatin-modifying enzymes. We show that the lysine-specific demethylase 1 and repressor element-1 silencing transcription factor corepressor 1 (LSD1/CoREST) histone demethylase complex interacts with BCL11A and is required for full developmental silencing of mouse embryonic ß-like globin genes and human γ-globin genes in adult erythroid cells in vivo. In addition, LSD1 is essential for normal erythroid development. Furthermore, the DNA methyltransferase 1 (DNMT1) is identified as a BCL11A-associated protein in the proteomic screen. DNMT1 is required to maintain HbF silencing in primary human adult erythroid cells. DNMT1 haploinsufficiency combined with BCL11A deficiency further enhances γ-globin expression in adult animals. Our findings provide important insights into the mechanistic roles of BCL11A in HbF silencing and clues for therapeutic targeting of BCL11A in ß-hemoglobinopathies.


Asunto(s)
Proteínas Portadoras/farmacología , Proteínas Co-Represoras/metabolismo , Hemoglobina Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/farmacología , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Cromatografía Liquida , Células Precursoras Eritroides , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteómica , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras , Espectrometría de Masas en Tándem , Globinas beta/metabolismo
7.
Dev Biol ; 373(2): 422-30, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23159334

RESUMEN

Transcriptional regulators play critical roles in the regulation of cell fate during hematopoiesis. Previous studies in zebrafish have identified an essential role for the transcriptional intermediary factor TIF1γ in erythropoiesis by regulating the transcription elongation of erythroid genes. To study if TIF1γ plays a similar role in murine erythropoiesis and to assess its function in other blood lineages, we generated mouse models with hematopoietic deletion of TIF1γ. Our results showed a block in erythroid maturation in the bone marrow following tif1γ deletion that was compensated with enhanced spleen erythropoiesis. Further analyses revealed a defect in transcription elongation of erythroid genes in the bone marrow. In addition, loss of TIF1γ resulted in defects in other blood compartments, including a profound loss of B cells, a dramatic expansion of granulocytes and decreased HSC function. TIF1γ exerts its functions in a cell-autonomous manner as revealed by competitive transplantation experiments. Our study therefore demonstrates that TIF1γ plays essential roles in multiple murine blood lineages and that its function in transcription elongation is evolutionally conserved.


Asunto(s)
Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Eritroides/citología , Eliminación de Gen , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mielopoyesis/genética , Bazo/metabolismo , Factores de Transcripción/deficiencia
8.
Exp Hematol ; 130: 104131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000729

RESUMEN

Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective growth advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identified Oncostatin M (OSM) signaling as a candidate contributor to age-related Dnmt3a-mutant CH. We found that Dnmt3a-mutant HSCs from young adult mice (3-6 months old) subjected to acute OSM stimulation do not demonstrate altered proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. Dnmt3a-mutant HSCs from young mice do transcriptionally upregulate an inflammatory cytokine network in response to acute in vitro OSM stimulation as evidenced by significant upregulation of the genes encoding IL-6, IL-1ß, and TNFα. OSM-stimulated Dnmt3a-mutant HSCs also demonstrate upregulation of the anti-inflammatory genes Socs3, Atf3, and Nr4a1. In the context of an aged bone marrow (BM) microenvironment, Dnmt3a-mutant HSCs upregulate proinflammatory genes but not the anti-inflammatory genes Socs3, Atf3, and Nr4a1. The results from our studies suggest that aging may exhaust the regulatory mechanisms that HSCs employ to resolve inflammatory states in response to factors such as OSM.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Ratones , Antiinflamatorios , Hematopoyesis/genética , Oncostatina M/genética
9.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585779

RESUMEN

Clonal hematopoiesis (CH) can predispose to blood cancers due to enhanced fitness of mutant hematopoietic stem and progenitor cells (HSPCs), but the mechanisms driving this progression are not understood. We hypothesized that malignant progression is related to microenvironment-remodelling properties of CH-mutant HSPCs. Single-cell transcriptomic profiling of the bone marrow microenvironment in Dnmt3a R878H/+ mice revealed signatures of cellular senescence in mesenchymal stromal cells (MSCs). Dnmt3a R878H/+ HSPCs caused MSCs to upregulate the senescence markers SA-ß-gal, BCL-2, BCL-xL, Cdkn1a (p21) and Cdkn2a (p16), ex vivo and in vivo . This effect was cell contact-independent and can be replicated by IL-6 or TNFα, which are produced by Dnmt3a R878H/+ HSPCs. Depletion of senescent MSCs in vivo reduced the fitness of Dnmt3a R878H/+ hematopoietic cells and the progression of CH to myeloid neoplasms using a sequentially inducible Dnmt3a ; Npm1 -mutant model. Thus, Dnmt3a -mutant HSPCs reprogram their microenvironment via senescence induction, creating a self-reinforcing niche favoring fitness and malignant progression. Statement of Significance: Mesenchymal stromal cell senescence induced by Dnmt3a -mutant hematopoietic stem and progenitor cells drives clonal hematopoiesis and initiation of hematologic malignancy.

10.
Res Sq ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38405837

RESUMEN

Clonal hematopoiesis (CH) arises when a hematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type (WT) HSCs, resulting in its clonal expansion. Individuals with CH are at an increased risk of developing hematologic neoplasms and a range of age-related inflammatory illnesses1-3. Therapeutic interventions that suppress the expansion of mutant HSCs have the potential to prevent these CH-related illnesses; however, such interventions have not yet been identified. The most common CH driver mutations are in the DNA methyltransferase 3 alpha (DNMT3A) gene with arginine 882 (R882) being a mutation hotspot. Here we show that murine hematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3aR878H/+ mutation, which is equivalent to human DNMT3AR882H/+, have increased mitochondrial respiration compared with WT cells and are dependent on this metabolic reprogramming for their competitive advantage. Importantly, treatment with metformin, an oral anti-diabetic drug with inhibitory activity against complex I in the electron transport chain (ETC), reduced the fitness of Dnmt3aR878H/+ HSCs. Through a multi-omics approach, we discovered that metformin acts by enhancing the methylation potential in Dnmt3aR878H/+ HSPCs and reversing their aberrant DNA CpG methylation and histone H3K27 trimethylation (H3K27me3) profiles. Metformin also reduced the fitness of human DNMT3AR882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against illnesses associated with DNMT3AR882 mutation-driven CH in humans.

11.
Blood ; 117(18): 4769-72, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21398579

RESUMEN

Master transcriptional regulators of development often function through dispersed cis elements at endogenous target genes. While cis-elements are routinely studied in transfection and transgenic reporter assays, it is challenging to ascertain how they function in vivo. To address this problem in the context of the locus encoding the critical hematopoietic transcription factor Gata2, we engineered mice lacking a cluster of GATA motifs 2.8 kb upstream of the Gata2 transcriptional start site. We demonstrate that the -2.8 kb site confers maximal Gata2 expression in hematopoietic stem cells and specific hematopoietic progenitors. By contrast to our previous demonstration that a palindromic GATA motif at the neighboring -1.8 kb site maintains Gata2 repression in terminally differentiating erythroid cells, the -2.8 kb site was not required to initiate or maintain repression. These analyses reveal qualitatively distinct functions of 2 GATA motif-containing regions in vivo.


Asunto(s)
Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hematopoyesis/genética , Hematopoyesis/fisiología , Secuencias de Aminoácidos , Animales , Eritropoyesis/genética , Eritropoyesis/fisiología , Factor de Transcripción GATA2/química , Expresión Génica , Técnicas de Sustitución del Gen , Genes de Cambio , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sitio de Iniciación de la Transcripción
12.
Nat Med ; 12(1): 89-98, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16341242

RESUMEN

The in vivo regulation of hematopoietic stem cell (HSC) function is poorly understood. Here, we show that hematopoietic repopulation can be augmented by administration of a glycogen synthase kinase-3 (GSK-3) inhibitor to recipient mice transplanted with mouse or human HSCs. GSK-3 inhibitor treatment improved neutrophil and megakaryocyte recovery, recipient survival and resulted in enhanced sustained long-term repopulation. The output of primitive Lin(-)c-Kit(+)Sca-1(+) cells and progenitors from HSCs increased upon GSK-3 inhibitor treatment without altering secondary repopulating ability, suggesting that the HSC pool is maintained while overall hematopoietic reconstitution is increased. GSK-3 inhibitors were found to modulate gene targets of Wnt, Hedgehog and Notch pathways in cells comprising the primitive hematopoietic compartment without affecting mature cells. Our study establishes GSK-3 as a specific in vivo modulator of HSC activity, and suggests that administration of GSK-3 inhibitors may provide a clinical means to directly enhance the repopulating capacity of transplanted HSCs.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/fisiología , Células Madre Hematopoyéticas/citología , Trasplante de Células Madre/métodos , Animales , Glucemia/metabolismo , Proliferación Celular , Trasplante de Células , Células Cultivadas , Medio de Cultivo Libre de Suero/farmacología , Inhibidores Enzimáticos/farmacología , Sangre Fetal/citología , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog , Humanos , Leucocitos Mononucleares/metabolismo , Megacariocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Modelos Biológicos , Neutrófilos/citología , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre , Factores de Tiempo , Transactivadores/metabolismo , Proteínas Wnt/metabolismo
13.
PLoS Genet ; 6(9): e1001103, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20838598

RESUMEN

In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element -1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the -1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the -1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.


Asunto(s)
Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Animales , Emparejamiento Base/genética , Islas de CpG/genética , Metilación de ADN/genética , Células Eritroides/metabolismo , Eritropoyesis/genética , Factor de Transcripción GATA2/metabolismo , Eliminación de Gen , Marcación de Gen , Sitios Genéticos/genética , Histonas/metabolismo , Ratones , Ratones Mutantes , Nucleoproteínas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Estrés Fisiológico/genética
14.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961653

RESUMEN

Oncostatin M (OSM) is a member of the interleukin-6 (IL-6) family of cytokines and has been found to have distinct anti-inflammatory and pro-inflammatory properties in various cellular and disease contexts. OSM signals through two receptor complexes, one of which includes OSMRß. To investigate OSM-OSMRß signaling in adult hematopoiesis, we utilized the readily available conditional Osmrfl/fl mouse model B6;129-Osmrtm1.1Nat/J, which is poorly characterized in the literature. This model contains loxP sites flanking exon 2 of the Osmr gene. We crossed Osmrfl/fl mice to interferon-inducible Mx1-Cre, which is robustly induced in adult hematopoietic cells. We observed complete recombination of the Osmrfl allele and loss of exon 2 in hematopoietic (bone marrow) as well as non-hematopoietic (liver, lung, kidney) tissues. Using a TaqMan assay with probes downstream of exon 2, Osmr transcript was lower in the kidney but equivalent in bone marrow, lung, and liver from Osmrfl/fl Mx1-Cre versus Mx1-Cre control mice, suggesting that transcript is being produced despite loss of this exon. Western blots show that liver cells from Osmrfl/fl Mx1-Cre mice had complete loss of OSMR protein, while bone marrow, kidney, and lung cells had reduced OSMR protein at varying levels. RNA-seq analysis of a subpopulation of bone marrow cells (hematopoietic stem cells) finds that some OSM-stimulated genes, but not all, are suppressed in Osmrfl/fl Mx1-Cre cells. Together, our data suggest that the B6;129-Osmrtm1.1Nat/J model should be utilized with caution as loss of Osmr exon 2 has variable and tissue-dependent impact on mRNA and protein expression.

15.
Exp Hematol ; 125-126: 1-5, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37433369

RESUMEN

Aging of hematopoietic stem cells (HSCs) is characterized by lineage bias, increased clonal expansion, and functional decrease. At the molecular level, aged HSCs typically display metabolic dysregulation, upregulation of inflammatory pathways, and downregulation of DNA repair pathways. Cellular aging of HSCs, driven by cell-intrinsic and cell-extrinsic factors, causes a predisposition to anemia, adaptive immune compromise, myelodys, plasia, and malignancy. Most hematologic diseases are strongly associated with age. But what is the biological foundation for decreased fitness with age? And are there therapeutic windows to resolve age-related hematopoietic decline? These questions were the focus of the International Society for Experimental Hematology (ISEH) New Investigator Committee Fall 2022 Webinar. This review touches on the latest insights from two leading laboratories into inflammatory- and niche-driven stem cell aging and includes speculation on strategies to prevent or correct age-related decline in HSC function.


Asunto(s)
Envejecimiento , Enfermedades Hematológicas , Humanos , Anciano , Envejecimiento/patología , Células Madre Hematopoyéticas/metabolismo , Senescencia Celular/genética , Enfermedades Hematológicas/metabolismo
16.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502912

RESUMEN

Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identify Oncostatin M (OSM) signaling as a candidate contributor to aging-driven Dnmt3a -mutant CH. We find that Dnmt3a -mutant HSCs from young mice do not functionally respond to acute OSM stimulation with respect to proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. However, young Dnmt3a -mutant HSCs transcriptionally upregulate an inflammatory cytokine network in response to acute OSM stimulation including genes encoding IL-6, IL-1ß and TNFα. In addition, OSM-stimulated Dnmt3a -mutant HSCs upregulate the anti-inflammatory genes Socs3, Atf3 and Nr4a1 , creating a negative feedback loop limiting sustained activation of the inflammatory network. In the context of an aged bone marrow (BM) microenvironment with chronically elevated levels of OSM, Dnmt3a -mutant HSCs upregulate pro-inflammatory genes but do not upregulate Socs3, Atf3 and Nr4a1 . Together, our work suggests that chronic inflammation with aging exhausts the regulatory mechanisms in young CH-mutant HSCs that resolve inflammatory states, and that OSM is a master regulator of an inflammatory network that contributes to age-associated CH.

17.
Cancer Cell ; 41(4): 641-645, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001528

RESUMEN

Age is among the main risk factors for cancer, and any cancer study in adults is faced with an aging tissue and organism. Yet, pre-clinical studies are carried out using young mice and are not able to address the impact of aging and associated comorbidities on disease biology and treatment outcomes. Here, we discuss the limitations of current mouse cancer models and suggest strategies for developing novel models to address these major gaps in knowledge and experimental approaches.


Asunto(s)
Envejecimiento , Neoplasias , Animales , Ratones , Neoplasias/genética , Modelos Animales de Enfermedad , Factores de Riesgo
18.
Blood Adv ; 6(12): 3666-3677, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35413095

RESUMEN

In adult acute myeloid leukemia (AML), the acquisition of driver somatic mutations may be preceded by a benign state termed clonal hematopoiesis (CH). To develop therapeutic strategies to prevent leukemia development from CH, it is important to understand the mechanisms by which CH-driving and AML-driving mutations cooperate. Here, we use mice with inducible mutant alleles common in human CH (DNMT3AR882; mouse Dnmt3aR878H) and AML (NPM1c; mouse Npm1cA). We find that Dnmt3aR878H/+ hematopoietic stem cells (HSCs), but not multipotent progenitor cell (MPP) subsets, have reduced cytokine expression and proinflammatory transcriptional signatures and a functional competitive advantage over their wild-type counterparts. Dnmt3aR878H/+ HSCs are the most potent cell type transformed by Npm1cA, generating myeloid malignancies in which few additional cooperating somatic mutation events were detected. At a molecular level, Npm1cA, in cooperation with Dnmt3aR878H, acutely increased the accessibility of a distinct set of promoters in HSCs compared with MPP cells. These promoters were enriched for cell cycling, PI3K/AKT/mTOR signaling, stem cell signatures, and targets of transcription factors, including NFAT and the chromatin binding factor HMGB1, which have been implicated in human AML. These results demonstrate cooperativity between preexisting Dnmt3aR878H and Npm1cA at the chromatin level, where specific loci altered in accessibility by Npm1cA are dependent on cell context as well as Dnmt3a mutation status. These findings have implications for biological understanding and therapeutic intervention in the transformation from CH to AML.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Animales , Cromatina , Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Trastornos Mieloproliferativos/patología , Nucleofosmina , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/uso terapéutico
19.
Cancer Discov ; 12(12): 2763-2773, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36169447

RESUMEN

Clonal hematopoiesis resulting from the enhanced fitness of mutant hematopoietic stem cells (HSC) associates with both favorable and unfavorable health outcomes related to the types of mature mutant blood cells produced, but how this lineage output is regulated is unclear. Using a mouse model of a clonal hematopoiesis-associated mutation, DNMT3AR882/+ (Dnmt3aR878H/+), we found that aging-induced TNFα signaling promoted the selective advantage of mutant HSCs and stimulated the production of mutant B lymphoid cells. The genetic loss of the TNFα receptor TNFR1 ablated the selective advantage of mutant HSCs without altering their lineage output, whereas the loss of TNFR2 resulted in the overproduction of mutant myeloid cells without altering HSC fitness. These results nominate TNFR1 as a target to reduce clonal hematopoiesis and the risk of associated diseases and support a model in which clone size and mature blood lineage production can be independently controlled to modulate favorable and unfavorable clonal hematopoiesis outcomes. SIGNIFICANCE: Through the identification and dissection of TNFα signaling as a key driver of murine Dnmt3a-mutant hematopoiesis, we report the discovery that clone size and production of specific mature blood cell types can be independently regulated. See related commentary by Niño and Pietras, p. 2724. This article is highlighted in the In This Issue feature, p. 2711.


Asunto(s)
Hematopoyesis Clonal , Receptores Tipo I de Factores de Necrosis Tumoral , Animales , Ratones , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Linaje de la Célula/genética
20.
Stem Cells ; 28(8): 1379-89, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20521329

RESUMEN

Quiescent cells lacking expression of mature lineage makers and the c-Kit receptor reside in adult bone marrow. Despite their phenotypic similarity to hematopoietic stem cells, these Lin(-)Sca-1(+)c-Kit(-) cells lack myeloid and erythroid potential and long-term hematopoietic repopulating capacity, whereas, recent studies have functionally demonstrated that the Lin(-)Sca-1(+)c-Kit(-) population contains early lymphoid-committed progenitors. Examining the role of Wnt signaling in regulation of this population, we found that c-Kit(-) cells express diverse Wnt receptors and proliferate upon Wnt pathway activation in vitro and in vivo. Stimulation with Wnt3a, but not Wnt5a or Wnt11, promoted c-Kit(-) cells to give rise to myeloid and erythroid progenitors with robust self-renewal capacity measured by clonal replating. In addition, Wnt3a-stimulated c-Kit(-) cells gave rise to all hematopoietic lineages (lymphoid, myeloid, and erythroid) upon transplant into the liver of newborn recipient mice. Our study reveals that Wnt3a activates unique cell fate decisions of dormant c-Kit(-) that promotes short-term multilineage reconstitution capacity in vivo, thereby revealing a unique role for Wnt activation in hematopoiesis. Overall, our results highlight the potential of utilizing signaling molecules known to have instructive roles in regeneration to discover cell subsets residing in adult organisms with unexploited regenerative capacity.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Wnt/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Trasplante de Células Madre Hematopoyéticas , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Reacción en Cadena de la Polimerasa , Embarazo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA