Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Geophys Res Earth Surf ; 127(4): e2021JF006505, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35864950

RESUMEN

We use satellite and airborne altimetry to estimate annual mass changes of the Greenland Ice Sheet. We estimate ice loss corresponding to a sea-level rise of 6.9 ± 0.4 mm from April 2011 to April 2020, with a highest annual ice loss rate of 1.4 mm/yr sea-level equivalent from April 2019 to April 2020. On a regional scale, our annual mass loss timeseries reveals 10-15 m/yr dynamic thickening at the terminus of Jakobshavn Isbræ from April 2016 to April 2018, followed by a return to dynamic thinning. We observe contrasting patterns of mass loss acceleration in different basins across the ice sheet and suggest that these spatiotemporal trends could be useful for calibrating and validating prognostic ice sheet models. In addition to resolving the spatial and temporal fingerprint of Greenland's recent ice loss, these mass loss grids are key for partitioning contemporary elastic vertical land motion from longer-term glacial isostatic adjustment (GIA) trends at GPS stations around the ice sheet. Our ice-loss product results in a significantly different GIA interpretation from a previous ice-loss product.

2.
Nat Commun ; 13(1): 7840, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543787

RESUMEN

West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans.


Asunto(s)
Atmósfera , Bahías , Océanos y Mares , Temperatura , Calor , Cubierta de Hielo , Regiones Antárticas , Caspasa 1
3.
Sci Adv ; 5(6): eaav9396, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31223652

RESUMEN

The Greenland Ice Sheet holds 7.2 m of sea level equivalent and in recent decades, rising temperatures have led to accelerated mass loss. Current ice margin recession is led by the retreat of outlet glaciers, large rivers of ice ending in narrow fjords that drain the interior. We pair an outlet glacier-resolving ice sheet model with a comprehensive uncertainty quantification to estimate Greenland's contribution to sea level over the next millennium. We find that Greenland could contribute 5 to 33 cm to sea level by 2100, with discharge from outlet glaciers contributing 8 to 45% of total mass loss. Our analysis shows that uncertainties in projecting mass loss are dominated by uncertainties in climate scenarios and surface processes, whereas uncertainties in calving and frontal melt play a minor role. We project that Greenland will very likely become ice free within a millennium without substantial reductions in greenhouse gas emissions.

4.
Nat Commun ; 8(1): 90, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733603

RESUMEN

Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

5.
Nat Commun ; 7: 10524, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26830316

RESUMEN

The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution.

6.
Forensic Sci Int ; 261: 161.e1-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26917542

RESUMEN

A glacial environment is a unique setting that can alter human remains in characteristic ways. This study describes glacial dynamics and how glaciers can be understood as taphonomic agents. Using a case study of human remains recovered from Colony Glacier, Alaska, a glacial taphonomic signature is outlined that includes: (1) movement of remains, (2) dispersal of remains, (3) altered bone margins, (4) splitting of skeletal elements, and (5) extensive soft tissue preservation and adipocere formation. As global glacier area is declining in the current climate, there is the potential for more materials of archaeological and medicolegal significance to be exposed. It is therefore important for the forensic anthropologist to have an idea of the taphonomy in this setting and to be able to differentiate glacial effects from other taphonomic agents.


Asunto(s)
Restos Mortales , Frío Extremo , Cubierta de Hielo , Accidentes de Aviación , Alaska , Huesos/patología , Antropología Forense , Humanos , Cambios Post Mortem
7.
Science ; 315(5818): 1508-10, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17363652
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA