Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Dermatol ; 33(3): e15066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532571

RESUMEN

Atopic dermatitis (AD) is a composite disease presenting disruption of the skin permeability barrier (SPB) in the stratum corneum (SC). Recent evidence supports derangement of the sebaceous gland (SG) activity in the AD pathomechanisms. The objective of this study was to delineate profiles of both sebaceous and epidermal lipids and of aminoacids from SG-rich (SGR) and SG-poor (SGP) areas in AD. Both sebum and SC were sampled from SGR areas, while SC was sampled also from SGP areas in 54 adult patients with AD, consisting of 34 and 20 subjects, respectively with and without clinical involvement of face, and in 44 age and sex-matched controls. Skin biophysics were assessed in all sampling sites. Disruption of the SBP was found to be associated with dysregulated lipidome. Abundance of sapienate and lignocerate, representing, respectively, sebum and the SC type lipids, were decreased in sebum and SC from both SGR and SGP areas. Analogously, squalene was significantly diminished in AD, regardless the site. Extent of lipid derangement in SGR areas was correlated with the AD severity. The abundance of aminoacids in the SC from SGR areas was altered more than that determined in SGP areas. Several gender-related differences were found in both controls and AD subgroups. In conclusion, the SG activity was differently compromised in adult females and males with AD, in both SGR and SGP areas. In AD, alterations in the aminoacidome profiles were apparent in the SGR areas. Lipid signatures in association with aminoacidome and skin physical properties may serve the definition of phenotype clusters that associate with AD severity and gender.


Asunto(s)
Dermatitis Atópica , Masculino , Adulto , Femenino , Humanos , Sebo , Glándulas Sebáceas , Piel , Lípidos
2.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203435

RESUMEN

Glucocorticoids (GCs) are commonly used in the treatment of inflammatory skin diseases, although the balance between therapeutic benefits and side effects is still crucial in clinical practice. One of the major and well-known adverse effects of topical GCs is cutaneous atrophy, which seems to be related to the activation of the glucorticoid receptor (GR) genomic pathway. Dissociating anti-inflammatory activity from atrophogenicity represents an important goal to achieve, in order to avoid side effects on keratinocytes and fibroblasts, known target cells of GC action. To this end, we evaluated the biological activity and safety profile of two novel chemical compounds, DE.303 and KL.202, developed as non-transcriptionally acting GR ligands. In primary keratinocytes, both compounds demonstrated anti-inflammatory properties inhibiting NF-κB activity, downregulating inflammatory cytokine release and interfering with pivotal signaling pathways involved in the inflammatory process. Of note, these beneficial actions were not associated with GC-related atrophic effects: treatments of primary keratinocytes and fibroblasts with DE.303 and KL.202 did not induce, contrarily to dexamethasone-a known potent GC-alterations in extracellular matrix components and lipid synthesis, thus confirming their safety profile. These data provide the basis for evaluating these compounds as effective alternatives to the currently used GCs in managing inflammatory skin diseases.


Asunto(s)
Dermatitis , Receptores de Glucocorticoides , Humanos , Piel , Antiinflamatorios/efectos adversos , Queratinocitos , Glucocorticoides/efectos adversos , Dermatitis/tratamiento farmacológico , Dermatitis/etiología , Atrofia
3.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445526

RESUMEN

Among disorders of pigmentation, vitiligo is the most common, with an estimated prevalence between 0.5% and 1%. The disease has gathered increased attention in the most recent years, leading to a better understanding of the disease's pathophysiology and its implications and to the development of newer therapeutic strategies. A better, more integrated approach is already in use for other chronic inflammatory dermatological diseases such as psoriasis, for which metabolic comorbidities are well-established and part of the routine clinical evaluation. The pathogenesis of these might be linked to cytokines which also play a role in vitiligo pathogenesis, such as IL-1, IL-6, TNF-α, and possibly IL-17. Following the reports of intrinsic metabolic alterations reported by our group, in this brief review, we analyze the available data on metabolic comorbidities in vitiligo, accompanied by our single-center experience. Increased awareness of the metabolic aspects of vitiligo is crucial to improving patient care.


Asunto(s)
Enfermedades Metabólicas/epidemiología , Vitíligo/epidemiología , Ensayos Clínicos como Asunto , Comorbilidad , Humanos , Enfermedades Metabólicas/patología , Vitíligo/patología
4.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299118

RESUMEN

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.


Asunto(s)
Antiinflamatorios/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Catecoles/farmacología , Diferenciación Celular , Inflamación/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Psoriasis/tratamiento farmacológico , Receptores de Hidrocarburo de Aril/metabolismo , Piel/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Ligandos , Psoriasis/metabolismo , Psoriasis/patología , Piel/metabolismo , Piel/patología
5.
Am J Med Genet A ; 182(3): 508-512, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31880396

RESUMEN

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2) is a rare autosomal recessive neuromuscular disorder characterized by arthrogryposis multiplex congenita and prenatal fractures of the long bones, with poor prognosis. The most affected patients present with biallelic loss-of-function nucleotide variants in ASCC1 gene, coding a subunit of the transcriptional coactivator ASC-1 complex, although the exact pathogenesis is yet unknown. This work describes the first case of SMABF2 in a stillbirth with documented evolution of the disease in the prenatal period. A microdeletion copy number variant (CNV) of about 64 Kb, involving four exons of ASCC1, was firstly detected by microarray analysis, requested for arthrogryposis and hydrops. Subsequent exome analysis disclosed a nucleotide variant of the same gene [c.1027C>T; (p. Arg343*)], resulting in the introduction of a premature termination codon. This stillbirth represents the first case of ASCC1 compound heterozygosity, due to an exonic microdeletion and a nucleotide variant, expanding the mutational spectrum of this gene. It also provides further evidence that exonic CNVs are an underestimated cause of disease-alleles and that the integrated use of the last generation genetic analysis tools, together with careful clinical evaluations, are fundamental for the characterization of rare diseases even in the prenatal setting.


Asunto(s)
Proteínas Portadoras/genética , Anomalías Congénitas/genética , Fracturas Óseas/genética , Atrofia Muscular Espinal/genética , Codón sin Sentido/genética , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/fisiopatología , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Femenino , Fracturas Óseas/diagnóstico , Fracturas Óseas/fisiopatología , Estudios de Asociación Genética , Pruebas Genéticas , Humanos , Masculino , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatología , Mutación Missense/genética , Linaje , Embarazo , Mortinato/epidemiología , Mortinato/genética , Secuenciación del Exoma
6.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533246

RESUMEN

Cellular, organ, and whole animal physiology show temporal variation predominantly featuring 24-h (circadian) periodicity. Time-course mRNA gene expression profiling in mouse liver showed two subsets of genes oscillating at the second (12-h) and third (8-h) harmonic of the prime (24-h) frequency. The aim of our study was to identify specific genomic, proteomic, and functional properties of ultradian and circadian subsets. We found hallmarks of the three oscillating gene subsets, including different (i) functional annotation, (ii) proteomic and electrochemical features, and (iii) transcription factor binding motifs in upstream regions of 8-h and 12-h oscillating genes that seemingly allow the link of the ultradian gene sets to a known circadian network. Our multifaceted bioinformatics analysis of circadian and ultradian genes suggests that the different rhythmicity of gene expression impacts physiological outcomes and may be related to transcriptional, translational and post-translational dynamics, as well as to phylogenetic and evolutionary components.


Asunto(s)
Genómica , Mamíferos/genética , Mamíferos/metabolismo , Proteómica , Animales , Sitios de Unión , Biomarcadores , Mapeo Cromosómico , Biología Computacional/métodos , Epigénesis Genética , Perfilación de la Expresión Génica , Genómica/métodos , Humanos , Anotación de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Proteoma , Proteómica/métodos , Factores de Tiempo , Factores de Transcripción
7.
Mol Plant Microbe Interact ; 30(2): 138-149, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28027026

RESUMEN

Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the host's hormonal responses and induction of stress response genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Asunto(s)
Endófitos/fisiología , Ambiente , Epichloe/fisiología , Interacciones Huésped-Patógeno , Lolium/inmunología , Lolium/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , ADN de Plantas/metabolismo , Endófitos/genética , Epichloe/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Fúngicos , Herbivoria , Hifa/genética , Lolium/crecimiento & desarrollo , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Simbiosis/genética , Transcripción Genética , Transcriptoma/genética
8.
Front Microbiol ; 15: 1432883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050624

RESUMEN

Sodium hypochlorite (NaOCl) is widely recognized for its broad-spectrum antimicrobial efficacy in skin wound care. This study investigates the effectiveness of NaOCl against a range of bacterial and fungal isolates from pressure ulcer (PU) patients. We analyzed 20 bacterial isolates from PU patients, comprising carbapenem-resistant Klebsiella pneumoniae (CRKP), multidrug-resistant Acinetobacter baumannii (MDRAB), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible Staphylococcus aureus (MSSA), along with 5 Candida albicans isolates. Antibiotic resistance profiles were determined using standard susceptibility testing. Whole-genome sequencing (WGS) was employed to identify antimicrobial resistance genes (ARGs) and disinfectant resistance genes (DRGs). Genetic determinants of biofilm formation were also assessed. The antimicrobial activity of NaOCl was evaluated by determining the minimum inhibitory concentration (MIC) and the minimal biofilm eradication concentration (MBEC) for both planktonic and biofilm-associated cells. CRKP and MDRAB showed resistance to fluoroquinolones and carbapenems, while MRSA exhibited resistance to ß-lactams and levofloxacin. MSSA displayed a comparatively lower resistance profile. WGS identified significant numbers of ARGs in CRKP and MDRAB, with fewer DRGs compared to MRSA and MSSA. All isolates possessed genes associated with fimbriae production and adhesion, correlating with pronounced biofilm biomass production. NaOCl demonstrated substantial antimicrobial activity against both planktonic cells and biofilms. The MIC90 for planktonic bacterial cells was 0.125 mg/mL, and the MBEC90 ranged from 0.225 to 0.5 mg/mL. For planktonic C. albicans, the MIC90 was 0.150 mg/mL, and the MBEC90 was 0.250 mg/mL. These results highlight the challenge in treating biofilm-associated infections and underscore the potential of NaOCl as a robust antimicrobial agent against difficult-to-treat biofilm infections at concentrations lower than those typically found in commercial disinfectants.

9.
Sci Rep ; 14(1): 2722, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302693

RESUMEN

Seborrheic dermatitis (SD) affects 2-5% of the global population, with imbalances in the skin microbiome implicated in its development. This study assessed the impact of an oily suspension containing Lactobacillus crispatus P17631 and Lacticaseibacillus paracasei I1688 (termed EUTOPLAC) on SD symptoms and the skin mycobiome-bacteriome modulation. 25 SD patients were treated with EUTOPLAC for a week. Symptom severity and skin mycobiome-bacteriome changes were measured at the start of the treatment (T0), after seven days (T8), and three weeks post-treatment (T28). Results indicated symptom improvement post-EUTOPLAC, with notable reductions in the Malassezia genus. Concurrently, bacterial shifts were observed, including a decrease in Staphylococcus and an increase in Lactobacillus and Lacticaseibacillus. Network analysis highlighted post-EUTOPLAC instability in fungal and bacterial interactions, with increased negative correlations between Malassezia and Lactobacillus and Lacticaseibacillus genera. The study suggests EUTOPLAC's potential as a targeted SD treatment, reducing symptoms and modulating the mycobiome-bacteriome composition.


Asunto(s)
Dermatitis Seborreica , Malassezia , Microbiota , Micobioma , Probióticos , Humanos , Dermatitis Seborreica/terapia , Dermatitis Seborreica/microbiología , Piel , Bacterias , Probióticos/uso terapéutico
10.
Front Microbiol ; 14: 1196774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425994

RESUMEN

Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.

11.
Gels ; 9(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38131926

RESUMEN

The photoantibacterial properties of titania nanoparticles (TiO2NPs) are attracting much interest, but the separation of their suspension limits their application. In this study, the encapsulation of commercial TiO2NPs within self-assembling tripeptide hydrogels to form hgel-TiO2NP composites with significant photoantibacterial properties is reported. The Fmoc-Phe3 hydrogelator was synthesized via an enzymatic method. The resulting composite was characterized with DLS, ζ-potential, SAXS, FESEM-EDS and rheological measurements. Two different concentrations of TiO2NPs were used. The results showed that, by increasing the TiO2NP quantity from 5 to 10 mg, the value of the elastic modulus doubled, while the swelling ratio decreased from 63.6 to 45.5%. The antimicrobial efficacy of hgel-TiO2NPs was tested against a laboratory Staphylococcus aureus (S. aureus) strain and two methicillin-resistant S. aureus (MRSA) clinical isolates. Results highlighted a concentration-dependent superior antibacterial activity of hgel-TiO2NPs over TiO2NPs in the dark and after UV photoactivation. Notably, UV light exposure substantially increased the biocidal action of hgel-TiO2NPs compared to TiO2NPs. Surprisingly, in the absence of UV light, both composites significantly increased S. aureus growth relative to control groups. These findings support the role of hgel-TiO2NPs as promising biocidal agents in clinical and sanitation contexts. However, they also signal concerns about TiO2NP exposure influencing S. aureus virulence.

12.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048080

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial-mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers' expression. Moreover, Octa and even more A02 counteracted the TGF-ß1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells' migratory capacity. Both compounds, especially A02, counterbalanced the TGF-ß1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Ratones , Animales , Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1/farmacología , PPAR gamma/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Carcinogénesis
13.
Front Immunol ; 14: 1226616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583699

RESUMEN

Objectives: Recent studies supported coagulation involvement in multiple sclerosis, an inflammatory-demyelinating and degenerative disease of the central nervous system. The main objectives of this observational study were to identify the most specific pro-coagulative/vascular factors for multiple sclerosis pathogenesis and to correlate them with brain hemodynamic abnormalities. Methods: We compared i) serum/plasma levels of complement(C)/coagulation/vascular factors, viral/microbiological assays, fat-soluble vitamins and lymphocyte count among people with multiple sclerosis sampled in a clinical remission (n=30; 23F/7M, 40 ± 8.14 years) or a relapse (n=30; 24F/6M, age 41 ± 10.74 years) and age/sex-matched controls (n=30; 23F/7M, 40 ± 8.38 years); ii) brain hemodynamic metrics at dynamic susceptibility contrast-enhanced 3T-MRI during relapse and remission, and iii) laboratory data with MRI perfusion metrics and clinical features of people with multiple sclerosis. Two models by Partial Least Squares Discriminant Analysis were performed using two groups as input: (1) multiple sclerosis vs. controls, and (2) relapsing vs. remitting multiple sclerosis. Results: Compared to controls, multiple sclerosis patients had a higher Body-Mass-Index, Protein-C and activated-C9; and a lower activated-C4. Levels of Tissue-Factor, Tie-2 and P-Selectin/CD62P were lower in relapse compared to remission and HC, whereas Angiopoietin-I was higher in relapsing vs. remitting multiple sclerosis. A lower number of total lymphocytes was found in relapsing multiple sclerosis vs. remitting multiple sclerosis and controls. Cerebral-Blood-Volume was lower in normal-appearing white matter and left caudatum while Cerebral-Blood-Flow was inferior in bilateral putamen in relapsing versus remitting multiple sclerosis. The mean-transit-time of gadolinium-enhancing lesions negatively correlated with Tissue-Factor. The top-5 discriminating variables for model (1) were: EBV-EBNA-1 IgG, Body-Mass-Index, Protein-C, activated-C4 and Tissue-Factor whereas for model (2) were: Tissue-Factor, Angiopoietin-I, MCHC, Vitamin A and T-CD3. Conclusion: Tissue-factor was one of the top-5 variables in the models discriminating either multiple sclerosis from controls or multiple sclerosis relapse from remission and correlated with mean-transit-time of gadolinium-enhancing lesions. Tissue-factor appears a promising pro-coagulative/vascular biomarker and a possible therapeutic target in relapsing-remitting multiple sclerosis. Clinical trial registration: ClinicalTrials.gov, identifier NCT04380220.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Adulto , Humanos , Persona de Mediana Edad , Gadolinio/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Recurrencia , Tromboplastina
14.
Sci Rep ; 12(1): 21104, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473894

RESUMEN

Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.


Asunto(s)
Acné Vulgar , Humanos , Adolescente
15.
Cells ; 11(22)2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36429011

RESUMEN

Vitiligo is a complex disease wherein derangements in multiple pathways determine the loss of functional melanocytes. Since its pathogenesis is not yet completely understood, vitiligo lacks a definitive safe and efficacious treatment. At present, different therapies are available; however, each modality has its baggage of disadvantages and side effects. Recently we have described several metabolic abnormalities in cells from pigmented skin of vitiligo patients, including alterations of glucose metabolism. Therefore, we conducted a study to evaluate the effect of Pioglitazone (PGZ), a Peroxisome proliferator-activated receptor-γ (PPARγ) agonist, on cells from pigmented vitiligo skin. We treated vitiligo melanocytes and fibroblasts with low doses of PGZ and evaluated the effects on mitochondrial alterations, previously reported by our and other groups. Treatment with PGZ significantly increased mRNA and protein levels of several anaerobic glycolytic enzymes, without increasing glucose consumption. The PGZ administration fully restored the metabolic network, replacing mitochondrial membrane potential and mitochondrial DNA (mtDNA) copy number. These effects, together with a significant increase in ATP content and a decrease in reactive oxygen species (ROS) production, provide strong evidence of an overall improvement of mitochondria bioenergetics in vitiligo cells. Moreover, the expression of HMGB1, Hsp70, defined as a part of DAMPs, and PD-L1 were significantly reduced. In addition, PGZ likely reverts premature senescence phenotype. In summary, the results outline a novel mode of action of Pioglitazone, which may turn out to be relevant to the development of effective new vitiligo therapeutic strategies.


Asunto(s)
PPAR gamma , Vitíligo , Humanos , PPAR gamma/metabolismo , Vitíligo/tratamiento farmacológico , Vitíligo/genética , Vitíligo/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Hipoglucemiantes , Melanocitos/metabolismo
16.
Sci Adv ; 8(35): eabn9299, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054352

RESUMEN

Vitiligo is an acquired skin depigmentation disease involving multiple pathogenetic mechanisms, which ultimately direct cytotoxic CD8+ cells to destroy melanocytes. Abnormalities have been described in several cells even in pigmented skin as an expression of a functional inherited defect. Keratinocytes regulate skin homeostasis by the assembly of a proper skin barrier and releasing and responding to cytokines and growth factors. Alterations in epidermal proliferation, differentiation, and lipid composition as triggers for immune response activation in vitiligo have not yet been investigated. By applying cellular and lipidomic approaches, we revealed a deregulated keratinocyte differentiation with altered lipid composition, associated with impaired energy metabolism and increased glycolytic enzyme expression. Vitiligo keratinocytes secreted inflammatory mediators, which further increased following mild mechanical stress, thus evidencing immune activation. These findings identify intrinsic alterations of the nonlesional epidermis, which can be the prime instigator of the local inflammatory milieu that stimulates immune responses targeting melanocytes.

17.
Microbiol Spectr ; 10(2): e0035122, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416701

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has become the leading cause of skin and soft tissue infections (SSTIs). Biofilm production further complicates patient treatment, contributing to increased bacterial persistence and antibiotic tolerance. The study aimed to explore the efficacy of different antibiotics on biofilm-producing MRSA isolated from patients with SSTI. A total of 32 MRSA strains were collected from patients with SSTI. The MIC and minimal biofilm eradication concentration (MBEC) were measured in planktonic and biofilm growth. The study showed that dalbavancin, linezolid, and vancomycin all inhibited MRSA growth at their EUCAST susceptible breakpoint. Of the MRSA strains, 87.5% (n = 28) were strong biofilm producers (SBPs), while only 12.5% (n = 4) were weak biofilm producers (WBPs). The MBEC90 values for dalbavancin were significantly lower than those of linezolid and vancomycin in all tested strains. We also found that extracellular DNA (eDNA) contributes to the initial microbial attachment and biofilm formation. The amount of eDNA differed among MRSA strains and was significantly higher in those isolates with high dalbavancin and vancomycin tolerance. Exogenously added DNA increased the MBEC90 and protection of biofilm cells from dalbavancin activity. Of note, the relative abundance of eDNA was higher in MRSA biofilms exposed to MBEC90 dalbavancin than in untreated MRSA biofilms and those exposed to sub-MIC90. Overall, dalbavancin was the most active antibiotic against MRSA biofilms at concentrations achievable in the human serum. Moreover, the evidence of a drug-related increase of eDNA and its contribution to antimicrobial drug tolerance reveals novel potential targets for antibiofilm strategies against MRSA. IMPORTANCE Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) worldwide. In addition, methicillin-resistant S. aureus (MRSA) is increasingly frequent in postoperative infections and responsible for a large number of hospital readmissions and deaths. Biofilm formation by S. aureus is a primary risk factor in SSTIs, due to a higher antibiotic tolerance. Our study showed that the biofilm-forming capacity varied among MRSA strains, although strong biofilm producers were significantly more abundant than weak biofilm producer strains. Notably, dalbavancin demonstrated a potent antibiofilm activity at concentrations achievable in human serum. Nevertheless, dalbavancin activity was affected by an increased concentration of extracellular DNA in the biofilm matrix. This study provides novel insight for designing more targeted therapeutic strategies against MRSA and to prevent or eradicate harmful biofilms.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , ADN , Humanos , Linezolid/farmacología , Linezolid/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Teicoplanina/análogos & derivados , Vancomicina/farmacología , Vancomicina/uso terapéutico
18.
Children (Basel) ; 9(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36010047

RESUMEN

COVID-19 is continuing to spread around the world, having a direct impact on people's daily lives and health. Although the knowledge of the impact of the COVID-19 pandemic on mental health in the general population is now well established, there is less information on its effect on specific and vulnerable populations, such as children with chronic illness (CI). We conducted a multi-centered cross-sectional study among pediatric patients in six public children's hospitals in Italy during the first lockdown, with the aim of assessing the proportion of children with CI presenting anxiety and depressive symptoms, and the clinical and demographic characteristics affecting such symptomatology. We included children with at least one chronic condition, with no cognitive delay, aged between 11 and 18 years. Brief standardized questionnaires were administered during medical scheduled visits to screen anxiety and depressive symptoms. We found a very high proportion of children showing mild to severe depressive and anxiety symptomatology (approximately 68% and 63%, respectively). Our results highlight the need of ensuring tailored psychological interventions to protect children with CI from the effect of the pandemic (and related restrictive measures such as quarantine and social distancing), with the final aim of promoting mental health and psychological well-being in this vulnerable population.

19.
Front Public Health ; 9: 683683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249847

RESUMEN

Background: During the lockdown for COVID-19, a massive decrease in hospital admissions for acute coronary syndrome (ACS) and a drop in air pollution were both detected in Italy. Our aim was to investigate the possible association between these two events at the Province of Terni, one of the most polluted urban and industrial area in Central Italy. Methods: We analyzed data of daily 24-h urban air concentrations of particulate matter (PM)10 and PM2.5 from fixed station monitoring network located in the main city centers of the Terni province, and accesses for ACS at the catheterization laboratory of the Cardiological Hub Center of the Terni University Hospital during lockdown. A comparison was made with data corresponding to the same lockdown time period of years 2019, 2018, and 2017. Results: Invasive procedures for ACS decreased in 2020 (n = 49) as compared with previous years (n = 93 in 2019, n = 109 in 2018, and n = 89 in 2017, p < 0.001). Conversely, reductions in average PM10 (20.7 µg/m3) and PM2.5 (14.7 µg/m3) in 2020 were consistent with a long-term decreasing trend, being comparable to those recorded in 2019 and 2018 (all p > 0.05) and slightly lower than 2017 (p < 0.05). The Granger-causality test demonstrated the lack of association between time-varying changes in air pollution and the number of procedures for ACS. Conclusions: Our results did not support the hypothesis that reduction in invasive procedures for ACS during lockdown was linked to an air cleaning effect. Reasons other than reduced air pollution should be sought to explain the observed decrease in ACS procedures.


Asunto(s)
Síndrome Coronario Agudo , Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Síndrome Coronario Agudo/epidemiología , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Italia/epidemiología , SARS-CoV-2
20.
Sci Rep ; 11(1): 16591, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400712

RESUMEN

Lipidomics is advantageous in the study of sebum perturbations occurring in acne. An extended evaluation of the sebum lipid profiles in acne-prone sebaceous areas is lacking in dark skin. Yet, there is a void space in understanding how the building blocks of sebum lipids, i.e. individual fatty acids (FAs), are intertwined with acne-prone skin. We aimed to determine the sebum lipidome in facial areas of adolescents with and without acne in Nigeria. A cross-sectional analytical study was conducted in 60 adolescents/young adults divided in 30 acne patients (15F, 15M) and 30 age and sex-matched controls. Sebum samples obtained from foreheads and cheeks were analysed separately by gas chromatography-mass spectrometry (GCMS) and thin layer chromatography (HPTLC). Distributions of sebum components were investigated with multivariate ANOVA-simultaneous component analysis (ASCA). Sebum incretion in acne was paralleled by significantly higher abundance of triglycerides, wax esters, and squalene together with monounsaturated FAs (MUFAs), and straight chain saturated FAs (SFAs), especially those with odd-carbon chain, i.e. C13:0, C15:0, and C17:0. Profiling weight/weight percentage of individual components revealed that, in acne, the free FAs (FFAs) array was shifted towards higher relative abundance of the SFAs C15:0, C16:0, and C17:0 and lower percentage of the anteiso-branched FFAs with 12, 14, 16, and 18 carbons. In acne patients, MUFAs and PUFAs were quantitatively increased and decreased on foreheads and cheeks, respectively. Relative abundance of fatty alcohols was decreased in acne independent on the site. The results indicated that acne associates with site-specific derangement of the pathways regulating the balance among odd straight-chain and branched-chain SFAs, MUFAs, which included sapienate (C16:1n-10), PUFAs, and squalene.


Asunto(s)
Acné Vulgar/metabolismo , Cara , Lipidómica , Lípidos/análisis , Sebo/química , Adolescente , Población Negra , Mejilla , Estudios Transversales , Ácidos Grasos/análisis , Alcoholes Grasos/análisis , Femenino , Frente , Humanos , Masculino , Nigeria , Índice de Severidad de la Enfermedad , Pigmentación de la Piel , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA