Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 593(7860): 597-601, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33902106

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Adenosina/análogos & derivados , Animales , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426843

RESUMEN

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Quirópteros/genética , Dieta , Evolución Molecular , Selección Genética , Adaptación Biológica/genética , Animales , Quirópteros/metabolismo , Conducta Alimentaria
3.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33693838

RESUMEN

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Asunto(s)
Quirópteros , Animales , Evolución Biológica , Quirópteros/genética , Evolución Molecular , Filogenia
4.
Mol Biol Evol ; 37(7): 2069-2083, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170943

RESUMEN

The transition to an aquatic lifestyle in cetaceans (whales and dolphins) resulted in a radical transformation in their sensory systems. Toothed whales acquired specialized high-frequency hearing tied to the evolution of echolocation, whereas baleen whales evolved low-frequency hearing. More generally, all cetaceans show adaptations for hearing and seeing underwater. To determine the extent to which these phenotypic changes have been driven by molecular adaptation, we performed large-scale targeted sequence capture of 179 sensory genes across the Cetacea, incorporating up to 54 cetacean species from all major clades as well as their closest relatives, the hippopotamuses. We screened for positive selection in 167 loci related to vision and hearing and found that the diversification of cetaceans has been accompanied by pervasive molecular adaptations in both sets of genes, including several loci implicated in nonsyndromic hearing loss. Despite these findings, however, we found no direct evidence of positive selection at the base of odontocetes coinciding with the origin of echolocation, as found in studies examining fewer taxa. By using contingency tables incorporating taxon- and gene-based controls, we show that, although numbers of positively selected hearing and nonsyndromic hearing loss genes are disproportionately high in cetaceans, counts of vision genes do not differ significantly from expected values. Alongside these adaptive changes, we find increased evidence of pseudogenization of genes involved in cone-mediated vision in mysticetes and deep-diving odontocetes.


Asunto(s)
Evolución Biológica , Cetáceos/genética , Audición/genética , Selección Genética , Visión Ocular/genética , Animales , Silenciador del Gen
5.
Syst Biol ; 69(3): 479-501, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633766

RESUMEN

The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for $\sim $3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from $>$38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.].


Asunto(s)
Cetáceos/clasificación , Cetáceos/genética , Filogenia , Animales , Biodiversidad , Clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de la Especie
6.
Mol Phylogenet Evol ; 139: 106551, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276779

RESUMEN

Recently diverged taxa are often characterised by high rates of introgressive hybridization and incomplete lineage sorting, both of which can complicate phylogenetic reconstructions of species histories. Here we use a sequence capture approach to obtain genome-wide data to resolve the evolutionary relationships, and infer the extent and timescale of hybridization and introgression events, among six recently diverged taxa of the horseshoe bat species complexes Rhinolophus sinicus and R. thomasi. We show that two different methods of species tree reconstruction applied to a set of ~1500 nuclear loci all recover species trees with similar topologies, differing from the previous phylogeny based on two nuclear loci. By comparing the tree topology obtained from the nuclear loci with that inferred from the mitochondrial genome, we observed at least three cases of conflict, each of which likely results from past introgression. Of these, the occurrence of a highly similar mitogenome sequence shared by individuals of two taxa in a sympatric region points to very recent mtDNA introgression. The other cases are characterised by greater divergence and strong phylogeographic structure among putative introgressed individuals and their source populations, and thus likely reflect more ancient hybridization events. These results also suggest that two of the subspecies (R. s. septentrionalis and the undescribed taxon R. s. ssp) are likely to represent full species, warranting full taxonomic descriptions. This work adds a growing number of studies showing the potential problems of relying solely on mitochondrial sequences, or a limited number of loci, to infer phylogenetic relationships among recently diverged taxa.


Asunto(s)
Evolución Biológica , Quirópteros/clasificación , Análisis de Secuencia de ADN/métodos , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Femenino , Genoma Mitocondrial , Hibridación Genética , Funciones de Verosimilitud , Masculino , Filogenia , Filogeografía , Especificidad de la Especie
7.
Nature ; 502(7470): 228-31, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24005325

RESUMEN

Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized.


Asunto(s)
Evolución Biológica , Quirópteros/clasificación , Quirópteros/genética , Delfines/clasificación , Delfines/genética , Ecolocación , Genoma/genética , Animales , Audición/genética , Filogenia , Selección Genética , Visión Ocular/genética
8.
BMC Biol ; 16(1): 39, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29653534

RESUMEN

BACKGROUND: Tunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species. RESULTS: Phylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450-350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages. CONCLUSIONS: Our study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies.


Asunto(s)
Evolución Molecular , Genómica/métodos , Filogenia , Transcriptoma/genética , Urocordados/genética , Animales , ARN Ribosómico 18S/genética , Urocordados/clasificación
10.
Mol Biol Evol ; 32(12): 3089-107, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318402

RESUMEN

During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein-protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.


Asunto(s)
Aclimatación/genética , Adaptación Fisiológica/genética , Ecosistema , Ratas Topo/genética , África del Sur del Sahara , Animales , Evolución Biológica , Ecología , Evolución Molecular , Genómica , Filogenia , Ratas , Selección Genética , Análisis de Secuencia de ADN/veterinaria , Transcriptoma
11.
BMC Evol Biol ; 14: 261, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25523630

RESUMEN

BACKGROUND: The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. RESULTS: Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. CONCLUSIONS: Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.


Asunto(s)
Evolución Biológica , Quirópteros/genética , Ecolocación , Evolución Molecular , Ballenas/genética , Animales , Secuencia de Bases , Quirópteros/clasificación , Quirópteros/fisiología , Secuencia Conservada , Delfines/genética , Delfines/fisiología , Oído/anatomía & histología , Oído/fisiología , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Filogenia , Especificidad de la Especie , Ballenas/fisiología
12.
Mol Biol Evol ; 30(7): 1574-87, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23564941

RESUMEN

Inferring a realistic demographic model from genetic data is an important challenge to gain insights into the historical events during the speciation process and to detect molecular signatures of selection along genomes. Recent advances in divergence population genetics have reported that speciation in face of gene flow occurred more frequently than theoretically expected, but the approaches used did not account for genome-wide heterogeneity (GWH) in introgression rates. Here, we investigate the impact of GWH on the inference of divergence with gene flow between two cryptic species of the marine model Ciona intestinalis by analyzing polymorphism and divergence patterns in 852 protein-coding sequence loci. These morphologically similar entities are highly diverged molecular-wise, but evidence of hybridization has been reported in both laboratory and field studies. We compare various speciation models and test for GWH under the approximate Bayesian computation framework. Our results demonstrate the presence of significant extents of gene flow resulting from a recent secondary contact after >3 My of divergence in isolation. The inferred rates of introgression are relatively low, highly variable across loci and mostly unidirectional, which is consistent with the idea that numerous genetic incompatibilities have accumulated over time throughout the genomes of these highly diverged species. A genomic map of the level of gene flow identified two hotspots of introgression, that is, large genome regions of unidirectional introgression. This study clarifies the history and degree of isolation of two cryptic and partially sympatric model species and provides a methodological framework to investigate GWH at various stages of speciation process.


Asunto(s)
Ciona intestinalis/genética , Evolución Molecular , Flujo Génico , Especiación Genética , Animales , Teorema de Bayes , Ciona intestinalis/fisiología , Hibridación Genética , Selección Genética , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36900171

RESUMEN

Altered dystrophin expression was found in some tumors and recent studies identified a developmental onset of Duchenne muscular dystrophy (DMD). Given that embryogenesis and carcinogenesis share many mechanisms, we analyzed a broad spectrum of tumors to establish whether dystrophin alteration evokes related outcomes. Transcriptomic, proteomic, and mutation datasets from fifty tumor tissues and matching controls (10,894 samples) and 140 corresponding tumor cell lines were analyzed. Interestingly, dystrophin transcripts and protein expression were found widespread across healthy tissues and at housekeeping gene levels. In 80% of tumors, DMD expression was reduced due to transcriptional downregulation and not somatic mutations. The full-length transcript encoding Dp427 was decreased in 68% of tumors, while Dp71 variants showed variability of expression. Notably, low expression of dystrophins was associated with a more advanced stage, older age of onset, and reduced survival across different tumors. Hierarchical clustering analysis of DMD transcripts distinguished malignant from control tissues. Transcriptomes of primary tumors and tumor cell lines with low DMD expression showed enrichment of specific pathways in the differentially expressed genes. Pathways consistently identified: ECM-receptor interaction, calcium signaling, and PI3K-Akt are also altered in DMD muscle. Therefore, the importance of this largest known gene extends beyond its roles identified in DMD, and certainly into oncology.

14.
Cancer Discov ; 13(10): 2228-2247, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37548590

RESUMEN

Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Interferones , Metiltransferasas , Animales , Ratones , Interferones/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Bicatenario
15.
Commun Biol ; 5(1): 868, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008532

RESUMEN

RNA methylation plays an important role in functional regulation of RNAs, and has thus attracted an increasing interest in biology and drug discovery. Here, we collected and collated transcriptomic, proteomic, structural and physical interaction data from the Harmonizome database, and applied supervised machine learning to predict novel genes associated with RNA methylation pathways in human. We selected five types of classifiers, which we trained and evaluated using cross-validation on multiple training sets. The best models reached 88% accuracy based on cross-validation, and an average 91% accuracy on the test set. Using protein-protein interaction data, we propose six molecular sub-networks linking model predictions to previously known RNA methylation genes, with roles in mRNA methylation, tRNA processing, rRNA processing, but also protein and chromatin modifications. Our study exemplifies how access to large omics datasets joined by machine learning methods can be used to predict gene function.


Asunto(s)
Aprendizaje Automático , Proteómica , Humanos , Metilación , ARN , Aprendizaje Automático Supervisado
16.
Curr Biol ; 31(20): 4667-4674.e6, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34478643

RESUMEN

In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.


Asunto(s)
Quirópteros , Animales , Aves/metabolismo , Carbohidratos , Quirópteros/genética , Metabolismo Energético , Glucosa/metabolismo , Néctar de las Plantas/metabolismo , Azúcares/metabolismo
17.
J Mol Evol ; 71(2): 153-67, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20697701

RESUMEN

Phylogenomics has recently revealed that tunicates represent the sister-group of vertebrates in the newly defined clade Olfactores. However, phylogenomic and comparative genomic studies have also suggested that tunicates are characterized by an elevated rate of molecular evolution and a high degree of genomic divergence. Despite the recurrent interest in the group, the picture of tunicate peculiar evolutionary dynamics is still fragmentary, as it mainly lies in studies focusing on only a few model species. In order to expand the available genomic data for the group, we used the high-throughput 454 technology to sequence the partial transcriptome of a previously unsampled tunicate, Microcosmus squamiger. This allowed us to get further insights into tunicate-accelerated evolution through a comparative analysis based on pertinent phylogenetic markers, i.e., a core of 35 housekeeping genes conserved across bilaterians. Our results showed that tunicates evolved on average about two times faster than the other chordates, yet the degree of this acceleration varied extensively upon genes and upon lineages. Appendicularia and Aplousobranchia were detected as the most divergent groups which were also characterized by highly heterogeneous substitution rates across genes. Finally, an estimation of the d (N)/d (S) ratio in three pairs of closely related taxa within Olfactores did not reveal strong differences between the tunicate and vertebrate lineages suggesting that for this set of housekeeping genes, the accelerated evolution of tunicates is plausibly due to an elevated mutation rate rather than to particular selective effects.


Asunto(s)
Secuencia Conservada/genética , Evolución Molecular , Genes , Urocordados/genética , Sustitución de Aminoácidos/genética , Animales , Perfilación de la Expresión Génica , Mutación Missense/genética , Filogenia , Homología de Secuencia , Vertebrados/genética
18.
Cell Stem Cell ; 27(3): 366-382.e7, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750316

RESUMEN

Tissue regeneration is a multi-step process mediated by diverse cellular hierarchies and states that are also implicated in tissue dysfunction and pathogenesis. Here we leveraged single-cell RNA sequencing in combination with in vivo lineage tracing and organoid models to finely map the trajectories of alveolar-lineage cells during injury repair and lung regeneration. We identified a distinct AT2-lineage population, damage-associated transient progenitors (DATPs), that arises during alveolar regeneration. We found that interstitial macrophage-derived IL-1ß primes a subset of AT2 cells expressing Il1r1 for conversion into DATPs via a HIF1α-mediated glycolysis pathway, which is required for mature AT1 cell differentiation. Importantly, chronic inflammation mediated by IL-1ß prevents AT1 differentiation, leading to aberrant accumulation of DATPs and impaired alveolar regeneration. Together, this stepwise mapping to cell fate transitions shows how an inflammatory niche controls alveolar regeneration by controlling stem cell fate and behavior.


Asunto(s)
Células Epiteliales Alveolares , Células Madre , Diferenciación Celular , Pulmón , Transducción de Señal
19.
BMC Evol Biol ; 9: 187, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19656395

RESUMEN

BACKGROUND: Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. RESULTS: Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister-group relationship between Salpida and Pyrosomatida within Thaliacea. CONCLUSION: An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution.


Asunto(s)
Evolución Molecular , Filogenia , ARN Ribosómico 18S/genética , Urocordados/genética , Animales , Secuencia de Bases , Teorema de Bayes , Genes de ARNr , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN , Urocordados/clasificación
20.
BMC Genomics ; 10: 534, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19922605

RESUMEN

BACKGROUND: Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. RESULTS: In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. CONCLUSION: This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny.


Asunto(s)
Genoma Mitocondrial/genética , Genómica , Filogenia , Urocordados/genética , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Evolución Molecular , Orden Génico , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Urocordados/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA