Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 298(1): 101476, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890642

RESUMEN

The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.


Asunto(s)
Proteínas Bacterianas , Ribulosa-Bifosfato Carboxilasa , Synechococcus , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono , Familia de Multigenes , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/enzimología , Synechococcus/genética , Synechococcus/metabolismo , Activador de Tejido Plasminógeno
2.
Proc Natl Acad Sci U S A ; 117(1): 381-387, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31848241

RESUMEN

The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-ß4 loop, pore loop 1, and the presensor 1-ß hairpin (PS1-ßH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Acidithiobacillus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Chaperonas Moleculares/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , Acidithiobacillus/genética , Acidithiobacillus/ultraestructura , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Dominio Catalítico/genética , Cristalografía por Rayos X , Activación Enzimática , Pruebas de Enzimas , Microscopía Electrónica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestructura , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Estructura Secundaria de Proteína , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/ultraestructura
3.
Proc Natl Acad Sci U S A ; 116(48): 24041-24048, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712424

RESUMEN

During photosynthesis the AAA+ protein and essential molecular chaperone Rubisco activase (Rca) constantly remodels inhibited active sites of the CO2-fixing enzyme Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) to release tightly bound sugar phosphates. Higher plant Rca is a crop improvement target, but its mechanism remains poorly understood. Here we used structure-guided mutagenesis to probe the Rubisco-interacting surface of rice Rca. Mutations in Ser-23, Lys-148, and Arg-321 uncoupled adenosine triphosphatase and Rca activity, implicating them in the Rubisco interaction. Mutant doping experiments were used to evaluate a suite of known Rubisco-interacting residues for relative importance in the context of the functional hexamer. Hexamers containing some subunits that lack the Rubisco-interacting N-terminal domain displayed a ∼2-fold increase in Rca function. Overall Rubisco-interacting residues located toward the rim of the hexamer were found to be less critical to Rca function than those positioned toward the axial pore. Rca is a key regulator of the rate-limiting CO2-fixing reactions of photosynthesis. A detailed functional understanding will assist the ongoing endeavors to enhance crop CO2 assimilation rate, growth, and yield.


Asunto(s)
Oryza/enzimología , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fotosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Dominios Proteicos , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética
4.
Proc Natl Acad Sci U S A ; 113(49): 14019-14024, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872295

RESUMEN

The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis-powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encode multiple homologs of CbbX, the α-proteobacterial red-type activase. Here we show that the gene products of two cbbX genes encoded by the nuclear and plastid genomes of the red algae Cyanidioschyzon merolae are nonfunctional in isolation, but together form a thermostable heterooligomeric Rca that can use both α-proteobacterial and red algal-inhibited rubisco complexes as a substrate. The mechanism of rubisco activation appears conserved between the bacterial and the algal systems and involves threading of the rubisco large subunit C terminus. Whereas binding of the allosteric regulator RuBP induces oligomeric transitions to the bacterial activase, it merely enhances the kinetics of ATP hydrolysis in the algal enzyme. Mutational analysis of nuclear and plastid isoforms demonstrates strong coordination between the subunits and implicates the nuclear-encoded subunit as being functionally dominant. The plastid-encoded subunit may be catalytically inert. Efforts to enhance crop photosynthesis by transplanting red algal rubiscos with enhanced kinetics will need to take into account the requirement for a compatible Rca.


Asunto(s)
Proteínas de Plantas/metabolismo , Rhodophyta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Regulación Alostérica/fisiología , Cinética , Chaperonas Moleculares/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Plastidios/genética , Ribulosa-Bifosfato Carboxilasa/antagonistas & inhibidores , Ribulosafosfatos/metabolismo
5.
Nat Commun ; 6: 8883, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26567524

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation.


Asunto(s)
Acidithiobacillus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Acidithiobacillus/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Crecimiento Quimioautotrófico , Pruebas de Enzimas , Escherichia coli , Microscopía Electrónica , Fotosíntesis/genética , Rhodobacter sphaeroides , Rhodopseudomonas , Rhodospirillum rubrum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA