Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(9): 091802, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36083644

RESUMEN

The W-boson mass, which was recently measured at Fermilab with an unprecedented precision, suggests the presence of new multiplets beyond the standard model (SM). One of the minimal extensions of the SM is to introduce an additional scalar doublet in which the non-SM scalars can enhance W-boson mass via the loop corrections. On the other hand, with a proper discrete symmetry, the lightest new scalar in the doublet can be stable and play the role of a dark matter particle. We show that the inert two Higgs doublet model can naturally handle the new W-boson mass without violating other constraints and that the preferred dark matter mass is between 54 and 74 GeV. We identify three feasible parameter regions for the thermal relic density: the SA coannihilation, the Higgs resonance, and the SS→WW^{*} annihilation. We find that the first region can be fully tested by the High Luminosity Large Hadron Collider, the second region will be tightly constrained by direct detection experiments, and the third region could yield detectable GeV γ-ray and antiproton signals in the Galaxy that may have been observed by the Fermi Large Area Telescope and the Alpha Magnetic Spectrometer AMS-02 experiment.

2.
Phys Rev Lett ; 118(19): 191101, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28548508

RESUMEN

Using the latest AMS-02 cosmic-ray antiproton flux data, we search for a potential dark matter annihilation signal. The background parameters about the propagation, source injection, and solar modulation are not assumed a priori but based on the results inferred from the recent B/C ratio and proton data measurements instead. The possible dark matter signal is incorporated into the model self-consistently under a Bayesian framework. Compared with the astrophysical background-only hypothesis, we find that a dark matter signal is favored. The rest mass of the dark matter particles is ∼20-80 GeV, and the velocity-averaged hadronic annihilation cross section is about (0.2-5)×10^{-26} cm^{3} s^{-1}, in agreement with that needed to account for the Galactic center GeV excess and/or the weak GeV emission from dwarf spheroidal galaxies Reticulum 2 and Tucana III. Tight constraints on the dark matter annihilation models are also set in a wide mass region.

3.
Sci Bull (Beijing) ; 69(6): 741-746, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38320899

RESUMEN

Several Pulsar Timing Array (PTA) Collaborations have recently provided strong evidence for a nHz Stochastic Gravitational-Wave Background (SGWB). Here we investigate the implications of a first-order phase transition occurring within the early Universe's dark quantum chromodynamics epoch, specifically within the framework of the mirror twin Higgs dark sector model. Our analysis indicates a distinguishable SGWB signal originating from this phase transition, which can explain the measurements obtained by PTAs. Remarkably, a significant portion of the parameter space for the SGWB signal also effectively resolves the existing tensions in both the H0 and S8 measurements in Cosmology. This intriguing correlation suggests a possible common origin of these three phenomena for 0.2<ΔNeff<0.5, where the mirror dark matter component constitutes less than 30% of the total dark matter abundance. Next-generation CMB experiments such as CMB-S4 can test this parameter region.

4.
Sci Bull (Beijing) ; 66(21): 2170-2174, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654107

RESUMEN

The supersymmetric model is one of the most attractive extensions of the Standard Model of particle physics. In light of the most recently reported anomaly of the muon g-2 measurement by the FermiLab E989 experiment, and the excesses of gamma rays at the Galactic center observed by Fermi-LAT space telescope, as well as the antiproton excess observed by the Alpha Magnetic Spectrometer, we propose to account for all these anomalies or excesses in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). Considering various experimental constraints including the Higgs mass, B-physics, collider data, dark matter relic density and direct detections, we find that a ~60 GeV bino-like neutralino is able to successfully explain all these observations. Our scenario can be sensitively probed by future direct detection experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA