Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 290(20): 12753-64, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25825491

RESUMEN

Attenuated nutrient signaling extends the life span in yeast and higher eukaryotes; however, the mechanisms are not completely understood. Here we identify the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing pathway as a novel longevity factor. A null mutation of SSY5 (ssy5Δ) increases replicative life span (RLS) by ∼50%. Our results demonstrate that several NAD(+) homeostasis factors play key roles in this life span extension. First, expression of the putative malate-pyruvate NADH shuttle increases in ssy5Δ cells, and deleting components of this shuttle, MAE1 and OAC1, largely abolishes RLS extension. Next, we show that Stp1, a transcription factor of the SPS pathway, directly binds to the promoter of MAE1 and OAC1 to regulate their expression. Additionally, deletion of SSY5 increases nicotinamide riboside (NR) levels and phosphate-responsive (PHO) signaling activity, suggesting that ssy5Δ increases NR salvaging. This increase contributes to NAD(+) homeostasis, partially ameliorating the NAD(+) deficiency and rescuing the short life span of the npt1Δ mutant. Moreover, we observed that vacuolar phosphatase, Pho8, is partially required for ssy5Δ-mediated NR increase and RLS extension. Together, our studies present evidence that supports SPS signaling is a novel NAD(+) homeostasis factor and ssy5Δ-mediated life span extension is likely due to concomitantly increased mitochondrial and vacuolar function. Our findings may contribute to understanding the molecular basis of NAD(+) metabolism, cellular life span, and diseases associated with NAD(+) deficiency and aging.


Asunto(s)
Proteínas Portadoras/metabolismo , Homeostasis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , NAD/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Proteasas/metabolismo , Transducción de Señal/fisiología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteínas Portadoras/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proteínas de la Membrana/genética , NAD/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina Proteasas/genética , Vacuolas/genética , Vacuolas/metabolismo
2.
Front Biol (Beijing) ; 10(4): 333-357, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27683589

RESUMEN

Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.

3.
J Aging Res ; 2011: 673185, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21584246

RESUMEN

Calorie restriction (CR) induces a metabolic shift towards mitochondrial respiration; however, molecular mechanisms underlying CR remain unclear. Recent studies suggest that CR-induced mitochondrial activity is associated with nitric oxide (NO) production. To understand the role of mitochondria in CR, we identify and study Saccharomyces cerevisiae mutants with increased NO levels as potential CR mimics. Analysis of the top 17 mutants demonstrates a correlation between increased NO, mitochondrial respiration, and longevity. Interestingly, treating yeast with NO donors such as GSNO (S-nitrosoglutathione) is sufficient to partially mimic CR to extend lifespan. CR-increased NO is largely dependent on mitochondrial electron transport and cytochrome c oxidase (COX). Although COX normally produces NO under hypoxic conditions, CR-treated yeast cells are able to produce NO under normoxic conditions. Our results suggest that CR may derepress some hypoxic genes for mitochondrial proteins that function to promote the production of NO and the extension of lifespan.

4.
Genes Dev ; 22(7): 931-44, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18381895

RESUMEN

Recent studies suggest that increased mitochondrial metabolism and the concomitant decrease in NADH levels mediate calorie restriction (CR)-induced life span extension. The mitochondrial inner membrane is impermeable to NAD (nicotinamide adenine dinucleotide, oxidized form) and NADH, and it is unclear how CR relays increased mitochondrial metabolism to multiple cellular pathways that reside in spatially distinct compartments. Here we show that the mitochondrial components of the malate-aspartate NADH shuttle (Mdh1 [malate dehydrogenase] and Aat1 [aspartate amino transferase]) and the glycerol-3-phosphate shuttle (Gut2, glycerol-3-phosphate dehydrogenase) are novel longevity factors in the CR pathway in yeast. Overexpressing Mdh1, Aat1, and Gut2 extend life span and do not synergize with CR. Mdh1 and Aat1 overexpressions require both respiration and the Sir2 family to extend life span. The mdh1Deltaaat1Delta double mutation blocks CR-mediated life span extension and also prevents the characteristic decrease in the NADH levels in the cytosolic/nuclear pool, suggesting that the malate-aspartate shuttle plays a major role in the activation of the downstream targets of CR such as Sir2. Overexpression of the NADH shuttles may also extend life span by increasing the metabolic fitness of the cells. Together, these data suggest that CR may extend life span and ameliorate age-associated metabolic diseases by activating components of the NADH shuttles.


Asunto(s)
Aspartato Aminotransferasas/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Levaduras/metabolismo , Aspartato Aminotransferasas/genética , Ácido Aspártico/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Western Blotting , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Malato Deshidrogenasa/genética , Malatos/metabolismo , Mitocondrias/metabolismo , Mutación , NAD/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Tiempo , Levaduras/genética
5.
J Biol Chem ; 282(9): 6161-71, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17200108

RESUMEN

Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR-induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex, is a novel metabolic longevity factor in the CR pathway. Deleting the LAT1 gene abolishes life span extension induced by CR. Overexpressing Lat1 extends life span, and this life span extension is not further increased by CR. Similar to CR, life span extension by Lat1 overexpression largely requires mitochondrial respiration, indicating that mitochondrial metabolism plays an important role in CR. Interestingly, Lat1 overexpression does not require the Sir2 family to extend life span, suggesting that Lat1 mediates a branch of the CR pathway that functions in parallel to the Sir2 family. Lat1 is also a limiting longevity factor in nondividing cells in that overexpressing Lat1 extends cell survival during prolonged culture at stationary phase. Our studies suggest that Lat1 overexpression extends life span by increasing metabolic fitness of the cell. CR may therefore also extend life span and ameliorate age-associated diseases by increasing metabolic fitness through regulating central metabolic enzymes.


Asunto(s)
Acetiltransferasa de Residuos Dihidrolipoil-Lisina/fisiología , Esperanza de Vida , Levaduras/citología , Levaduras/enzimología , Ciclo Celular , Supervivencia Celular , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Modelos Biológicos
6.
Science ; 309(5742): 1861-4, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16051752

RESUMEN

Calorie restriction (CR) extends the life span of numerous species, from yeast to rodents. Yeast Sir2 is a nicotinamide adenine dinucleotide (NAD+-dependent histone deacetylase that has been proposed to mediate the effects of CR. However, this hypothesis has been challenged by the observation that CR can extend yeast life span in the absence of Sir2. Here, we show that Sir2-independent life-span extension is mediated by Hst2, a Sir2 homolog that promotes the stability of repetitive ribosomal DNA, the same mechanism by which Sir2 extends life span. These findings demonstrate that the maintenance of DNA stability is critical for yeast life-span extension by CR and suggest that, in higher organisms, multiple members of the Sir2 family may regulate life span in response to diet.


Asunto(s)
Restricción Calórica , Longevidad , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Sirtuinas/genética , Sirtuinas/fisiología , ADN de Hongos/genética , ADN Ribosómico/genética , Eliminación de Gen , Silenciador del Gen , Genes Fúngicos , Histona Desacetilasas/genética , Histona Desacetilasas/fisiología , Mutación , Niacinamida/farmacología , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Sirtuina 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA