Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 42(33): 6313-6324, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35790401

RESUMEN

While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.


Asunto(s)
Dolor Abdominal , Agonistas de Receptores de Cannabinoides , Cannabinoides , Receptores Opioides , Dolor Abdominal/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1 , Receptores Opioides/agonistas
2.
Gut ; 71(4): 695-704, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33785555

RESUMEN

OBJECTIVE: The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN: Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS: NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit ß-arrestins and evoke MOPr endocytosis. CONCLUSION: In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.


Asunto(s)
Colitis , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Insuficiencia Respiratoria , Dolor Visceral , Animales , Colitis/inducido químicamente , Colon , Estreñimiento , Fentanilo/efectos adversos , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Ratones , Receptores Opioides , Microambiente Tumoral
3.
Gut ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36591617

RESUMEN

OBJECTIVE: Dietary therapies for irritable bowel syndrome (IBS) have received increasing interest but predicting which patients will benefit remains a challenge due to a lack of mechanistic insight. We recently found evidence of a role for the microbiota in dietary modulation of pain signalling in a humanised mouse model of IBS. This randomised cross-over study aimed to test the hypothesis that pain relief following reduced consumption of fermentable carbohydrates is the result of changes in luminal neuroactive metabolites. DESIGN: IBS (Rome IV) participants underwent four trial periods: two non-intervention periods, followed by a diet low (LFD) and high in fermentable carbohydrates for 3 weeks each. At the end of each period, participants completed questionnaires and provided stool. The effects of faecal supernatants (FS) collected before (IBS FS) and after a LFD (LFD FS) on nociceptive afferent neurons were assessed in mice using patch-clamp and ex vivo colonic afferent nerve recording techniques. RESULTS: Total IBS symptom severity score and abdominal pain were reduced by the LFD (N=25; p<0.01). Excitability of neurons was increased in response to IBS FS, but this effect was reduced (p<0.01) with LFD FS from pain-responders. IBS FS from pain-responders increased mechanosensitivity of nociceptive afferent nerve axons (p<0.001), an effect lost following LFD FS administration (p=NS) or when IBS FS was administered in the presence of antagonists of histamine receptors or protease inhibitors. CONCLUSIONS: In a subset of IBS patients with improvement in abdominal pain following a LFD, there is a decrease in pronociceptive signalling from FS, suggesting that changes in luminal mediators may contribute to symptom response.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38494056

RESUMEN

BACKGROUND & AIMS: Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS: In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 µg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS: Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 µmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS: Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.

5.
Pain ; 164(11): 2501-2515, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326658

RESUMEN

ABSTRACT: Targeting the acidified inflammatory microenvironment with pH-sensitive opioids is a novel approach for managing visceral pain while mitigating side effects. The analgesic efficacy of pH-dependent opioids has not been studied during the evolution of inflammation, where fluctuating tissue pH and repeated therapeutic dosing could influence analgesia and side effects. Whether pH-dependent opioids can inhibit human nociceptors during extracellular acidification is unexplored. We studied the analgesic efficacy and side-effect profile of a pH-sensitive fentanyl analog, (±)- N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide (NFEPP), during the evolution of colitis induced in mice with dextran sulphate sodium. Colitis was characterized by granulocyte infiltration, histological damage, and acidification of the mucosa and submucosa at sites of immune cell infiltration. Changes in nociception were determined by measuring visceromotor responses to noxious colorectal distension in conscious mice. Repeated doses of NFEPP inhibited nociception throughout the course of disease, with maximal efficacy at the peak of inflammation. Fentanyl was antinociceptive regardless of the stage of inflammation. Fentanyl inhibited gastrointestinal transit, blocked defaecation, and induced hypoxemia, whereas NFEPP had no such side effects. In proof-of-principle experiments, NFEPP inhibited mechanically provoked activation of human colonic nociceptors under acidic conditions mimicking the inflamed state. Thus, NFEPP provides analgesia throughout the evolution of colitis with maximal activity at peak inflammation. The actions of NFEPP are restricted to acidified layers of the colon, without common side effects in normal tissues. N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide could provide safe and effective analgesia during acute colitis, such as flares of ulcerative colitis.


Asunto(s)
Colitis , Dolor Visceral , Ratones , Humanos , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon , Analgésicos/farmacología , Inflamación/patología , Dolor Visceral/patología , Fentanilo/farmacología , Fentanilo/uso terapéutico , Concentración de Iones de Hidrógeno
6.
Neurogastroenterol Motil ; 35(9): e14596, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37248774

RESUMEN

BACKGROUND: Monosodium glutamate (MSG) has been identified as a trigger of abdominal pain in irritable bowel syndrome (IBS), but the mechanism is unknown. This study examined whether MSG causes visceral hypersensitivity using a water-avoidance stress (WAS) mouse model of visceral pain. METHODS: Mice were divided into four groups receiving treatment for 6 days: WAS + MSG gavage, WAS + saline gavage, sham-WAS + MSG gavage, and sham-WAS + saline gavage. The acute effects of intraluminal administration of 10 µM MSG on jejunal extrinsic afferent nerve sensitivity to distension (0-60 mmHg) were examined using ex vivo extracellular recordings. MSG was also applied directly to jejunal afferents from untreated mice. Glutamate concentration was measured in serum, and in the serosal compartment of Ussing chambers following apical administration. KEY RESULTS: Acute intraluminal MSG application increased distension responses of jejunal afferent nerves from mice exposed to WAS + MSG. This effect was mediated by wide dynamic range and high-threshold units at both physiologic and noxious pressures (10-60 mmHg, p < 0.05). No effect of MSG was observed in the other groups, or when applied directly to the jejunal afferent nerves. Serum glutamate was increased in mice exposed to WAS + MSG compared to sham-WAS + saline, and serosal glutamate increased using WAS tissue (p = 0.0433). CONCLUSIONS AND INFERENCES: These findings demonstrate that repeated exposure to MSG in mice leads to sensitization of jejunal afferent nerves to acute ex vivo exposure to MSG. This may contribute to visceral hypersensitivity reported in response to MSG in patients with IBS.


Asunto(s)
Síndrome del Colon Irritable , Dolor Visceral , Animales , Ratones , Glutamato de Sodio/toxicidad , Síndrome del Colon Irritable/inducido químicamente , Dieta , Glutamatos , Deshidratación , Modelos Animales de Enfermedad , Solución Salina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA