RESUMEN
Most hepatocellular carcinomas (HCCs) develop in a chronically injured liver, yet the extent to which this microenvironment promotes neoplastic transformation or influences selective pressures for genetic drivers of HCC remains unclear. We sought to determine the impact of hepatic injury in an established mouse model of HCC induced by Sleeping Beauty transposon mutagenesis. Chemically induced chronic liver injury dramatically increased tumor penetrance and significantly altered driver mutation profiles, likely reflecting distinct selective pressures. In addition to established human HCC genes and pathways, we identified several injury-associated candidates that represent promising loci for further study. Among them, we found that FIGN is overexpressed in human HCC and promotes hepatocyte invasion. We also validated Gli2's oncogenic potential in vivo, providing direct evidence that Hedgehog signaling can drive liver tumorigenesis in the context of chronic injury. Finally, we show that a subset of injury-associated candidate genes identifies two distinct classes of human HCCs. Further analysis of these two subclasses revealed significant trends among common molecular classification schemes of HCC. The genes and mechanisms identified here provide functional insights into the origin of HCC in a chronic liver damage environment. CONCLUSION: A chronically damaged liver microenvironment influences the genetic mechanisms that drive hepatocarcinogenesis. (Hepatology 2018;67:924-939).
Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Neoplasias Hepáticas/genética , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/complicaciones , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Hígado/patología , Masculino , Ratones , Mutagénesis , MutaciónRESUMEN
The genetic complexity and heterogeneity of cancer has posed a problem in designing rationally targeted therapies effective in a large proportion of human cancer. Genomic characterization of many cancer types has provided a staggering amount of data that needs to be interpreted to further our understanding of this disease. Forward genetic screening in mice using Sleeping Beauty (SB) based insertional mutagenesis is an effective method for candidate cancer gene discovery that can aid in distinguishing driver from passenger mutations in human cancer. This system has been adapted for unbiased screens to identify drivers of multiple cancer types. These screens have already identified hundreds of candidate cancer-promoting mutations. These can be used to develop new mouse models for further study, which may prove useful for therapeutic testing. SB technology may also hold the key for rapid generation of reverse genetic mouse models of cancer, and has already been used to model glioblastoma and liver cancer.
Asunto(s)
Elementos Transponibles de ADN , Neoplasias Experimentales/genética , Animales , Genes Relacionados con las Neoplasias , Humanos , Ratones Transgénicos , Mutagénesis , Mutagénesis Insercional , Genética Inversa , Transposasas/genéticaRESUMEN
We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB-induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB-induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis.
Asunto(s)
Neoplasias Hepáticas , Proteínas Gestacionales , Retroelementos/genética , Animales , Transformación Celular Neoplásica , Cromosomas Humanos Par 14/metabolismo , Regulación Neoplásica de la Expresión Génica , Impresión Genómica , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Mutación , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Transposasas/metabolismoRESUMEN
UNLABELLED: Hepatocellular carcinoma (HCC) is one of the deadliest solid cancers and is the third leading cause of cancer-related death. There is a universal estimated male/female ratio of 2.5, but the reason for this is not well understood. The Sleeping Beauty (SB) transposon system was used to elucidate candidate oncogenic drivers of HCC in a forward genetics screening approach. Sex bias occurrence was conserved in our model, with male experimental mice developing liver tumors at reduced latency and higher tumor penetrance. In parallel, we explored sex differences regarding genomic aberrations in 235 HCC patients. Liver cancer candidate genes were identified from both sexes and genotypes. Interestingly, transposon insertions in the epidermal growth factor receptor (Egfr) gene were common in SB-induced liver tumors from male mice (10/10, 100%) but infrequent in female mice (2/9, 22%). Human single-nucleotide polymorphism data confirmed that polysomy of chromosome 7, locus of EGFR, was more frequent in males (26/62, 41%) than females (2/27, 7%) (P = 0.001). Gene expression-based Poly7 subclass patients were predominantly male (9/9) compared with 67% males (55/82) in other HCC subclasses (P = 0.02), and this subclass was accompanied by EGFR overexpression (P < 0.001). CONCLUSION: Sex bias occurrence of HCC associated with EGFR was confirmed in experimental animals using the SB transposon system in a reverse genetic approach. This study provides evidence for the role of EGFR in sex bias occurrences of liver cancer and as the driver mutational gene in the Poly7 molecular subclass of human HCC.
Asunto(s)
Carcinoma Hepatocelular/genética , Cromosomas Humanos Par 7 , Receptores ErbB/genética , Neoplasias Hepáticas/genética , Factores Sexuales , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica , Elementos Transponibles de ADN , Femenino , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Transgénicos , Mutagénesis Insercional , beta Catenina/metabolismoRESUMEN
UNLABELLED: The mechanisms associated with hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remain elusive, and there are currently no well-established animal models for studying this disease. Using the Sleeping Beauty transposon as a delivery system, we introduced an oncogenic component of HBV, the hepatitis B virus X (HBx) gene, into the livers of fumarylacetoacetate hydrolase (Fah) mutant mice via hydrodynamic tail vein injections. Coexpression of Fah complementary DNA from the transposon vector allowed for the selective repopulation of genetically corrected hepatocytes in Fah mutant mice. The process of hydrodynamic delivery induced liver inflammation, and the subsequent selective repopulation of hepatocytes carrying the transgene(s) could provide useful genetic information about the mechanisms of HBV-induced hyperplasia. Short hairpin RNA directed against transformation-related protein 53 (shp53) or other tumor suppressor genes and oncogenes [e.g., constitutively active neuroblastoma RAS viral (v-ras) oncogene homolog with Gly12Val substitution (NRAS(G12V) )] could also be codelivered with HBx by this system so that we could determine whether oncogenic cooperation existed. We found that the expression of HBx induced the activation of ß-catenin expression in hydrodynamically injected livers, and this indicated its association with the Wnt signaling pathway in HBV-induced hyperplasia. HBx coinjected with shp53 accelerated the formation of liver hyperplasia in these mice. As expected, constitutively active NRAS(G12V) alone was sufficient to induce liver hyperplasia, and its tumorigenicity was augmented when it was coinjected with shp53. Interestingly, HBx did not seem to cooperate with constitutively active NRAS(G12V) in driving liver tumorigenesis. CONCLUSION: This system can be used as a model for studying the various genetic contributions of HBV to liver hyperplasia and finally HCC in an in vivo system.
Asunto(s)
Carcinoma Hepatocelular/virología , Neoplasias Hepáticas/virología , Transactivadores/genética , Animales , Hígado/patología , Ratones , Proteína Oncogénica p21(ras)/genética , Transgenes , Proteína p53 Supresora de Tumor/genética , Proteínas Reguladoras y Accesorias Virales , beta Catenina/genéticaRESUMEN
The genetic mechanisms involved in the transformation from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis-type-1- (NF1-)associated or sporadic malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. It is hypothesized that many genetic changes are involved in transformation. Recently, it has been shown that both phosphatase and tensin homolog (PTEN) and epidermal growth factor receptor (EGFR) play important roles in the initiation of peripheral nerve sheath tumors (PNSTs). In human MPNSTs, PTEN expression is often reduced, while EGFR expression is often induced. We tested if these two genes cooperate in the evolution of PNSTs. Transgenic mice were generated carrying conditional floxed alleles of Pten, and EGFR was expressed under the control of the 2',3'-cyclic nucleotide 3'phosphodiesterase (Cnp) promoter and a desert hedgehog (Dhh) regulatory element driving Cre recombinase transgenic mice (Dhh-Cre). Complete loss of Pten and EGFR overexpression in Schwann cells led to the development of high-grade PNSTs. In vitro experiments using immortalized human Schwann cells demonstrated that loss of PTEN and overexpression of EGFR cooperate to increase cellular proliferation and anchorage-independent colony formation. This mouse model can rapidly recapitulate PNST onset and progression to high-grade PNSTs, as seen in sporadic MPNST patients.
RESUMEN
BACKGROUND: The MEK1/2 inhibitor selumetinib was recently approved for neurofibromatosis type 1 (NF1)-associated plexiform neurofibromas, but outcomes could be improved and its pharmacodynamic evaluation in other relevant tissues is limited. The aim of this study was to assess selumetinib tissue pharmacokinetics (PK) and pharmacodynamics (PD) using a minipig model of NF1. METHODS: WT (n = 8) and NF1 (n = 8) minipigs received a single oral dose of 7.3 mg/kg selumetinib. Peripheral blood mononuclear cells (PBMCs), cerebral cortex, optic nerve, sciatic nerve, and skin were collected for PK analysis and PD analysis of extracellular regulated kinase phosphorylation (p-ERK) inhibition and transcript biomarkers (DUSP6 & FOS). RESULTS: Key selumetinib PK parameters aligned with those observed in human patients. Selumetinib concentrations were higher in CNS tissues from NF1 compared to WT animals. Inhibition of ERK phosphorylation was achieved in PBMCs (mean 60% reduction), skin (95%), and sciatic nerve (64%) from all minipigs, whereas inhibition of ERK phosphorylation in cerebral cortex was detected only in NF1 animals (71%). Basal p-ERK levels were significantly higher in NF1 minipig optic nerve compared to WT and were reduced to WT levels (60%) with selumetinib. Modulation of transcript biomarkers was observed in all tissues. CONCLUSIONS: Selumetinib reduces MAPK signaling in tissues clinically relevant to NF1, effectively normalizing p-ERK to WT levels in optic nerve but resulting in abnormally low levels of p-ERK in the skin. These results suggest that selumetinib exerts activity in NF1-associated CNS tumors by normalizing Ras/MAPK signaling and may explain common MEK inhibitor-associated dermatologic toxicities.
RESUMEN
BACKGROUND & AIMS: Zinc finger and BTB domain containing 20 (ZBTB20) has been implicated as a potential oncogene in liver cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein (Afp) gene in adult liver, and reduced levels of ZBTB20 allow for upregulation of AFP with increased tumour severity in certain cases of hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis, the aim of this study was to elucidate the role of ZBTB20 in HCC tumourigenesis. METHODS: A reverse genetic study using the Sleeping Beauty (SB) transposon system in mice was performed to elucidate the role of ZBTB20 in HCC tumourigenesis. In vitro ZBTB20 gain- and loss-of-function experiments were used to assess the relationship amongst ZBTB20, peroxisome proliferator activated receptor gamma (PPARG) and catenin beta 1 (CTNNB1). RESULTS: Transgenic overexpression of ZBTB20 in hepatocytes and in the context of transformation related protein (T r p53) inactivation induced hepatic hypertrophy, activation of WNT/CTNNB1 signalling, and development of liver tumours. In vitro overexpression and knockout experiments using CRISPR/Cas9 demonstrated the important role for ZBTB20 in downregulating PPARG, resulting in activation of the WNT/CTNNB1 signalling pathway and its downstream effectors in HCC tumourigenesis. CONCLUSIONS: These findings demonstrate a novel interaction between ZBTB20 and PPARG, which leads to activation of the WNT/CTNNB1 signalling pathway in HCC tumourigenesis. LAY SUMMARY: ZBTB20 has been implicated as a potential oncogene in liver cancer. Herein, we uncover its important role in liver cancer development. We show that it interacts with PPARG to upregulate the WNT/CTNNB1 signalling pathway, leading to tumourigenesis.
RESUMEN
BACKGROUND: Aberrant MET receptor tyrosine kinase (RTK) activation leads to invasive tumor growth in different types of cancer. Overexpression of MET and its ligand hepatocyte growth factor (HGF) occurs more frequently in glioblastoma (GBM) than in low-grade gliomas. Although we have shown previously that HGF-autocrine activation predicts sensitivity to MET tyrosine kinase inhibitors (TKIs) in GBM, whether it initiates tumorigenesis remains elusive. METHODS: Using a well-established Sleeping Beauty (SB) transposon strategy, we injected human HGF and MET cDNA together with a short hairpin siRNA against Trp53 (SB-hHgf.Met.ShP53) into the lateral ventricle of neonatal mice to induce spontaneous glioma initiation and characterized the tumors with H&E and immunohistochemistry analysis. Glioma sphere cells also were isolated for measuring the sensitivity to specific MET TKIs. RESULTS: Mixed injection of SB-hHgf.Met.ShP53 plasmids induced de novo glioma formation with invasive tumor growth accompanied by HGF and MET overexpression. While glioma stem cells (GSCs) are considered as the tumor-initiating cells in GBM, both SB-hHgf.Met.ShP53 tumor sections and glioma spheres harvested from these tumors expressed GSC markers nestin, GFAP, and Sox 2. Moreover, specific MET TKIs significantly inhibited tumor spheres' proliferation and MET/MAPK/AKT signaling. CONCLUSIONS: Overexpression of the HGF/MET axis along with p53 attenuation may transform neural stem cells into GSCs, resulting in GBM formation in mice. These tumors are primarily driven by the MET RTK pathway activation and are sensitive to MET TKIs. The SB-hHgf.Met.ShP53 spontaneous mouse glioma model provides a useful tool for studying GBM tumor biology and MET-targeting therapeutics.
RESUMEN
Chronic hepatitis B viral (HBV) infection remains a high underlying cause for hepatocellular carcinoma (HCC) worldwide, while the genetic mechanisms behind this remain unclear. This study elucidated the mechanisms contributing to tumor development induced by the HBV X (HBx) gene of predominantly Asian genotype B HBV and its common HBx variants. To compare the potential tumorigenic effects of K130M/V131I (Mut) and wild-type (WT) HBx on HCC, the Sleeping Beauty (SB) transposon system was used to deliver HBx Mut and WT into the livers of fumarylacetoacetate hydrolase (Fah)-deficient mice and in the context of transformation related protein 53 (Trp53) deficiency. From our results, HBx Mut had a stronger tumorigenic effect than its WT variant. Also, inflammation, necrosis, and fibrosis were evident in HBx experimental animals. Reduction of forkhead box O1 (FOXO1) with increased phosphorylation of upstream serine/threonine kinase (AKT) was detected under HBx Mut overexpression. Thus, it is proposed that HBx Mut enhances disease progression by reducing FOXO1 via phosphorylation of AKT. At the metabolomic level, HBx altered the expression of genes that participated in arachidonic acid (AA) metabolism, as a result of inflammation via accumulation of proinflammatory factors such as prostaglandins and leukotriene in liver. Taken together, the increased rate of HCC observed in chronic hepatitis B patients with K130M/V131I-mutated X protein, may be due to changes in AA metabolism and AKT/FOXO1 signaling. IMPLICATIONS: Our findings suggested that HBx-K130M/V131I-mutant variant promoted HCC progression by activating AKT/FOXO1 pathway and inducing stronger inflammation in liver via AA metabolism.
Asunto(s)
Ácido Araquidónico/metabolismo , Proteína Forkhead Box O1/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transactivadores/genética , Animales , Ácido Araquidónico/genética , Carcinogénesis/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/genética , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Humanos , Hidrolasas/genética , Inflamación/genética , Inflamación/patología , Inflamación/virología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Ratones , Ratones Transgénicos , Mutación , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Reguladoras y Accesorias ViralesRESUMEN
Each year, more than 25,000 people succumb to liver cancer in the United States, and this neoplasm represents the second cause of cancer-related death globally. R-spondins (RSPOs) are secreted regulators of Wnt signaling that function in development and promote tissue stem cell renewal. In cancer, RSPOs 2 and 3 are oncogenes first identified by insertional mutagenesis screens in tumors induced by mouse mammary tumor virus and by transposon mutagenesis in the colonic epithelium of rodents. RSPO2 has been reported to be activated by chromosomal rearrangements in colorectal cancer and overexpressed in a subset of hepatocellular carcinoma. Using human liver tumor gene expression data, we first discovered that a subset of liver cancers were characterized by high levels of RSPO2 in contrast to low levels in adjacent nontumor tissue. To determine if RSPOs are capable of inducing liver tumors, we used an in vivo model from which we found that overexpression of RSPO2 in the liver promoted Wnt signaling, hepatomegaly, and enhanced liver tumor formation when combined with loss of transformation-related protein 53 (Trp53). Moreover, the Hippo/yes-associated protein (Yap) pathway has been implicated in many human cancers, influencing cell survival. Histologic and gene expression studies showed activation of Wnt/ß-catenin and Hippo/Yap pathways following RSPO2 overexpression. We demonstrate that knockdown of Yap1 leads to reduced tumor penetrance following RSPO2 overexpression in the context of loss of Trp53. Conclusion: RSPO2 overexpression leads to tumor formation in the mouse liver in a Hippo/Yap-dependent manner. Overall, our results suggest a role for Yap in the initiation and progression of liver tumors and uncover a novel pathway activated in RSPO2-induced malignancies. We show that RSPO2 promotes liver tumor formation in vivo and in vitro and that RSPO2's oncogenic activity requires Hippo/Yap activation in hepatocytes. Both RSPO2 and YAP1 are suggested to represent novel druggable targets in Wnt-driven tumors of the liver.
RESUMEN
Medulloblastoma and central nervous system primitive neuroectodermal tumors (CNS-PNET) are aggressive, poorly differentiated brain tumors with limited effective therapies. Using Sleeping Beauty (SB) transposon mutagenesis, we identified novel genetic drivers of medulloblastoma and CNS-PNET. Cross-species gene expression analyses classified SB-driven tumors into distinct medulloblastoma and CNS-PNET subgroups, indicating they resemble human Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with FOXR2 activation. This represents the first genetically induced mouse model of CNS-PNET and a rare model of group 3 and 4 medulloblastoma. We identified several putative proto-oncogenes including Arhgap36, Megf10, and Foxr2. Genetic manipulation of these genes demonstrated a robust impact on tumorigenesis in vitro and in vivo. We also determined that FOXR2 interacts with N-MYC, increases C-MYC protein stability, and activates FAK/SRC signaling. Altogether, our study identified several promising therapeutic targets in medulloblastoma and CNS-PNET. SIGNIFICANCE: A transposon-induced mouse model identifies several novel genetic drivers and potential therapeutic targets in medulloblastoma and CNS-PNET.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Tumores Neuroectodérmicos Primitivos/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Elementos Transponibles de ADN/genética , Femenino , Factores de Transcripción Forkhead/genética , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Mutagénesis Insercional/métodos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Tumores Neuroectodérmicos Primitivos/metabolismo , Tumores Neuroectodérmicos Primitivos/patología , PronósticoRESUMEN
Hepatic steatosis is a strong risk factor for the development of hepatocellular carcinoma (HCC), yet little is known about the molecular pathology associated with this factor. In this study, we performed a forward genetic screen using Sleeping Beauty (SB) transposon insertional mutagenesis in mice treated to induce hepatic steatosis and compared the results to human HCC data. In humans, we determined that steatosis increased the proportion of female HCC patients, a pattern also reflected in mice. Our genetic screen identified 203 candidate steatosis-associated HCC genes, many of which are altered in human HCC and are members of established HCC-driving signaling pathways. The protein kinase A/cyclic AMP signaling pathway was altered frequently in mouse and human steatosis-associated HCC. We found that activated PKA expression drove steatosis-specific liver tumorigenesis in a mouse model. Another candidate HCC driver, the N-acetyltransferase NAT10, which we found to be overexpressed in human steatosis-associated HCC and associated with decreased survival in human HCC, also drove liver tumorigenesis in a steatotic mouse model. This study identifies genes and pathways promoting HCC that may represent novel targets for prevention and treatment in the context of hepatic steatosis, an area of rapidly growing clinical significance. Cancer Res; 77(23); 6576-88. ©2017 AACR.
Asunto(s)
Carcinoma Hepatocelular/genética , Hígado Graso/genética , Hígado Graso/patología , Neoplasias Hepáticas/genética , Mutagénesis Insercional/genética , Transposasas/genética , Animales , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Elementos Transponibles de ADN/genética , Femenino , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis/genética , Acetiltransferasa E N-Terminal/biosíntesis , Acetiltransferasas N-Terminal , Transducción de Señal/genéticaRESUMEN
To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/ß-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and ß-catenin activity. ß-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and ß-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3ß and the SWI/SNF gene Arid1b to increase ß-catenin. Knockdown of Arid1b or Gsk3ß in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/ß-catenin pathway inhibitors in neurofibroma therapeutic trials.
Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Acetiltransferasa A N-Terminal/genética , Neurofibromatosis 1/genética , Neoplasias del Sistema Nervioso Periférico/genética , Factor de Transcripción STAT3/genética , beta Catenina/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Desnudos , Mutagénesis Insercional , Acetiltransferasa A N-Terminal/antagonistas & inhibidores , Acetiltransferasa A N-Terminal/metabolismo , Trasplante de Neoplasias , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias del Sistema Nervioso Periférico/metabolismo , Neoplasias del Sistema Nervioso Periférico/patología , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/metabolismoRESUMEN
The major type of human liver cancer is hepatocellular carcinoma (HCC), and there are currently many risk factors that contribute to this deadly disease. The majority of HCC occurrences are associated with chronic hepatitis viral infection, and hepatitis B viral (HBV) infection is currently a major health problem in Eastern Asia. Elucidating the genetic mechanisms associated with HBV-induced HCC has been difficult due to the heterogeneity and genetic complexity associated with this disease. A repertoire of animal models has been broadly used to study the pathophysiology and to develop potential treatment regimens for HBV-associated HCC. The use of these animal models has provided valuable genetic information and has been an important contributor to uncovering the factors involved in liver malignant transformation, invasion and metastasis. Recently, transposon-based mouse models are becoming more widely used in liver cancer research to interrogate the genome by forward genetics and also used to validate genes rapidly in a reverse genetic manner. Importantly, these transposon-based rapid reverse genetic mouse models could become crucial in testing potential therapeutic agents before proceeding to clinical trials in human. Therefore, this review will cover the use of transposon-based mouse models to address the problems of liver cancer, especially HBV-associated HCC occurrences in Asia.
Asunto(s)
Carcinoma Hepatocelular/genética , Transformación Celular Viral/genética , Elementos Transponibles de ADN , Virus de la Hepatitis B/genética , Hepatitis B/complicaciones , Neoplasias Hepáticas/genética , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Regulación Viral de la Expresión Génica , Genoma Viral , Genotipo , Interacciones Huésped-Patógeno , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Ratones , Ratones TransgénicosRESUMEN
The genetic evolution from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis type 1 (NF1) syndrome remains unclear. Schwann cells and/or their precursor cells are believed to be the primary pathogenic cell in neurofibromas because they harbor biallelic neurofibromin 1 (NF1) gene mutations. However, the phosphatase and tensin homolog (Pten) and neurofibromatosis 1 (Nf1) genes recently were found to be comutated in high-grade peripheral nerve sheath tumors (PNST) in mice. In this study, we created transgenic mice that lack both Pten and Nf1 in Schwann cells and Schwann cell precursor cells to validate the role of these two genes in PNST formation in vivo. Haploinsufficiency or complete loss of Pten dramatically accelerated neurofibroma development and led to the development of higher grade PNSTs in the context of Nf1 loss. Pten dosage, together with Nf1 loss, was sufficient for the progression from low-grade to high-grade PNSTs. Genetic analysis of human malignant PNSTs (MPNST) also revealed downregulation of PTEN expression, suggesting that Pten-regulated pathways are major tumor-suppressive barriers to neurofibroma progression. Together, our findings establish a novel mouse model that can rapidly recapitulate the onset of human neurofibroma tumorigenesis and the progression to MPNSTs.