Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 477(21): 4191-4206, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33073844

RESUMEN

The transport efficiency (TE) describes the performance of a transport protein for a specific substrate. To compare the TE of different transporters, the number of active transporters in the plasma membrane must be monitored, as it may vary for each transporter and experiment. Available methods, like LC-MS quantification of tryptic peptides, fail to discriminate inactive intracellular transporters or, like cell-surface biotinylation followed by affinity chromatography and Western blotting, are imprecise and very laborious. We wanted to normalize active transporters by the activity of a second transporter. A transporter tandem, generated by joining two transporter cDNAs into a single open reading frame, should guarantee a 1 : 1 stoichiometry. Here we created a series of tandems with different linkers between the human ergothioneine (ET) transporter ETT (gene symbol SLC22A4) and organic cation transporter OCT2 (SLC22A2). The linker sequence strongly affected the expression strength. The stoichiometry was validated by absolute peptide quantification and untargeted peptide analysis. Compared with wild-type ETT, the normalized ET clearance of the natural variant L503F was higher (f = 1.34); G462E was completely inactive. The general usefulness of the tandem strategy was demonstrated by linking several transporters with ETT; every construct was active in both parts. Transporter tandems can be used - without membrane isolation or protein quantification - as precise tools for transporter number normalization, to identify, for example, relevant transporters for a drug. It is necessary, however, to find suitable linkers, to check the order of transporters, and to verify the absence of functional interference by saturation kinetics.


Asunto(s)
Membrana Celular/metabolismo , Transporte Biológico/fisiología , Análisis Mutacional de ADN/métodos , ADN Complementario/genética , ADN Complementario/metabolismo , Ergotioneína/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo
2.
Drug Metab Dispos ; 46(6): 779-785, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29530864

RESUMEN

The candidate vitamin ergothioneine (ET) is a unique antioxidant. Expression of the ET transporter (ETT) (gene symbol SLC22A4) in distinct cells is thought to signal intracellular ET activity, since we have previously shown that the ETT is highly selective for ET. Unfortunately, some continue to hold the ETT as a relevant drug transporter, using the misleading functional name OCTN1, novel organic cation transporter. The present study was provoked by two recent reports in which new ETT substrates were declared. Astonishingly, the transport efficiencies (TEs) of ETT for saracatinib and some nucleoside drugs were as high as the TE for ET. Here we examined, based on regulated expression of ETT from human and rat in 293 cells and liquid chromatography-mass spectrometry quantification, the transport of several drugs. With the nucleosides cytarabine, gemcitabine, 2'-deoxycytidine, and 2'-deoxyadenosine, and the drugs saracatinib, ipratropium, metformin, and oxaliplatin, the uptake into cells expressing ETT was not increased over control cells. ETT-mediated uptake of gabapentin was detectable, but the TE was approximately 100-fold lower than the TE for ergothioneine (50-200 µl/min per milligram of protein). In conclusion, the ETT remains highly specific for its physiologic substrate ergothioneine. Our results contradict several reports on additional substrates. The ETT does not provide multiple substrate specificities, and it is not a transporter of cationic drugs. Only compounds that are related to ET in substructure-for example, gabapentin, carnitine, and TEA-can be transported, but with very low efficiency. Thus, ETT persists as a specific molecular indicator of ET activity.


Asunto(s)
Transporte Biológico/fisiología , Ergotioneína/metabolismo , Animales , Antioxidantes/metabolismo , Línea Celular , Células HEK293 , Humanos , Proteínas de Transporte de Catión Orgánico/metabolismo , Preparaciones Farmacéuticas/metabolismo , Ratas , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA