Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Exp Pharmacol Physiol ; 48(2): 227-237, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124084

RESUMEN

Gossypol is a natural polyphenol presently considered as a promising biological phytochemical with a range of activities including anticancer. We examined volume regulation-dependent effects of gossypol using erythrocytes and thymic lymphocytes. Gossypol effectively lysed human red blood cells (RBC) with a half-maximal concentration of 67.4 ± 1.6 µmol/L and in a non-colloid osmotic manner. Sublytic gossypol doses of 1-10 µmol/L significantly protected RBC from osmotic hemolysis, but potentiated their sensitivity to the colloid-osmotic lysis induced by a pore-former nystatin. When added to the thymocytes suspension, gossypol caused a strong depression of the ability of cells to restore their volume under hypoosmotic stress with a half-maximal activity at 2.1 ± 0.3 µmol/L. Gossypol suppressed regulatory volume decrease under experimental conditions, when cationic permeability was controlled by gramicidin D, and volume recovery depended mainly on anionic conductance, suggesting that the polyphenol inhibits the swelling-induced anion permeability. In direct patch-clamp experiments, gossypol inhibited the volume-sensitive outwardly rectifying (VSOR) chloride channel in thymocytes and in human HCT116 and HeLa cells, possibly by a mechanism when gossypol molecule with a radius close to the size of channel pore plugs into the narrowest portion of the native VSOR chloride channel. Micromolar gossypol suppressed proliferation of thymocytes, HCT116 and HeLa cells. VSOR blockage may represent new mechanism of anticancer activity of gossypol in addition to its action as a BH3-mimetic.


Asunto(s)
Timocitos , Canales de Cloruro , Gosipol , Células HeLa , Humanos , Permeabilidad
2.
Life (Basel) ; 11(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073084

RESUMEN

The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the SLCO2A1 gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.

3.
Pharmacol Rep ; 71(6): 1079-1087, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31629088

RESUMEN

BACKGROUND: Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored. METHODS: We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique. RESULTS: Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 µM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volume-sensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner. CONCLUSION: Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for developing effective low-toxic immunomodulators.


Asunto(s)
Canales de Cloruro/fisiología , Flavonoides/farmacología , Presión Osmótica/efectos de los fármacos , Timocitos/fisiología , Alcaloides/farmacología , Animales , Tamaño de la Célula/efectos de los fármacos , Flavanonas/farmacología , Flavonoides/química , Gramicidina , Técnicas de Placa-Clamp , Quinolizidinas/farmacología , Ratas , Timocitos/efectos de los fármacos , Timocitos/metabolismo
4.
Channels (Austin) ; 11(2): 109-120, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-27764579

RESUMEN

The broadly expressed volume-sensitive outwardly rectifying anion channel (VSOR, also called VRAC) plays essential roles in cell survival and death. Recent findings have suggested that LRRC8A is a core component of VSOR in human cells. In the present study, VSOR currents were found to be largely reduced by siRNA against LRRC8A in mouse C127 cells as well. In contrast, LRRC8A knockdown never affected activities of 4 other types of anion channel activated by acid, Ca2+, patch excision or cAMP. While cisplatin-resistant KCP-4 cells poorly expressed endogenous VSOR activity, molecular expression levels of LRRC8A, LRRC8D and LRRC8E were indistinguishable between VSOR-deficient KCP-4 cells and the parental VSOR-rich KB cells. Furthermore, overexpression of LRRC8A alone or together with LRRC8D or LRRC8E in KCP-4 cells failed to restore VSOR activity. These results show that deficiency of VSOR currents in KCP-4 cells is not due to insufficient expression of the LRRC8A/D/E gene, suggesting an essential involvement of some other factor(s), and indicate that further study is required to better understand the complexities of the molecular determinants of VSOR, including the precise role of LRRC8 proteins.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Ratones , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA