Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 15(5)2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38790262

RESUMEN

Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.


Asunto(s)
Filamentos Intermedios , Dominios Proteicos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/genética , Filamentos Intermedios/química , Humanos , Animales , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/metabolismo , Citoesqueleto , Modelos Moleculares
2.
Cells ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607042

RESUMEN

Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.


Asunto(s)
Desmina , Animales , Desmina/química , Desmina/metabolismo , Filamentos Intermedios/metabolismo , Músculos/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mutación , Humanos
3.
Theranostics ; 11(12): 5939-5954, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897891

RESUMEN

Aims: We previously found that complement components are upregulated in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), and inhibiting the complement receptor C5aR reduces disease severity in desmin knockout (Des-/- ) mice, a model for ARVC. Here, we examined the mechanism underlying complement activation in ARVC, revealing a potential new therapeutic target. Methods: First, immunostaining, RT-PCR and western blot were used to detect the expression levels of complement and coagulation factors. Second, we knocked out the central complement component C3 in Des-/- mice (ARVC model) by crossing Des-/- mice with C3-/- mice to explore whether complement system activation occurs independently of the conventional pathway. Then, we evaluated whether a targeted intervention to coagulation system is effective to reduce myocardium injury. Finally, the plasma sC5b9 level was assessed to investigate the role in predicting adverse cardiac events in the ARVC cohort. Results: The complement system is activated in the myocardium in ARVC. Autoantibodies against myocardial proteins provided a possible mechanism underlying. Moreover, we found increased levels of myocardial C5 and the serum C5a in Des-/-C3-/- mice compared to wild-type mice, indicating that C5 is activated independently from the conventional pathway, presumably via the coagulation system. Crosstalk between the complement and coagulation systems exacerbated the myocardial injury in ARVC mice, and this injury was reduced by using the thrombin inhibitor lepirudin. In addition, we found significantly elevated plasma levels of sC5b9 and thrombin in patients, and this increase was correlated with all-cause mortality. Conclusions: These results suggest that crosstalk between the coagulation and complement systems plays a pathogenic role in cardiac dysfunction in ARVC. Thus, understanding this crosstalk may have important clinical implications with respect to diagnosing and treating ARVC.


Asunto(s)
Coagulación Sanguínea/inmunología , Activación de Complemento/inmunología , Ventrículos Cardíacos/inmunología , Miocardio/inmunología , Adulto , Animales , Displasia Ventricular Derecha Arritmogénica/inmunología , Autoanticuerpos/inmunología , Femenino , Hirudinas/inmunología , Humanos , Masculino , Ratones Noqueados , Persona de Mediana Edad , Proteínas Recombinantes/inmunología , Trombina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA