Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 32(11): 2327-2341, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34664934

RESUMEN

Leishmaniasis is among the five parasitic diseases that still require the development of new drugs. Ultrasmall cerium (Ce3/4+) cation-doped maghemite (γ-Fe2O3) nanoparticles (NPs) were tested as a potential drug to treat visceral leishmaniasis, a disease affecting millions of people worldwide. The NPs were engineered for binding a polycationic branched polyethylenimine (PEI) polymer, thereby rupturing the single lysosome of these parasites and enabling entry of the anti-Leishmania drug, pentamidine. Exploiting the known lanthanide cation/complex-based coordinative chemical reactivity enabled the binding of both active agents onto the surface of the NPs. To optimize the fabrication of the cytotoxic NPs, optimization via a DoE (Design of Experiments) process was used to identify the optimal NP with toxicity against the two stages of the parasite, promastigotes, which propagate in the insect, and amastigotes, which infect the mammalian host. The screen identified a single optimized NP (DoE Opt) that was further examined in a mouse model of visceral leishmaniasis. Intravenous injection of the NPs had no adverse effects on the cellular composition or biochemical parameters of the blood, demonstrating no signs of systemic toxicity. The optimized NP was able to eradicate visceral disease caused by Leishmania donovani infection. The study demonstrates the versatile ability of the cerium-doped NPs to bind at least two cytotoxic ligands. This approach could be used for optimizing the binding of different drugs for the treatment of other diseases, including cancer. Since resistance to treatment with nanocarriers was not reported to date, such an approach could potentially overcome drug resistance that emerges when using soluble small molecule drugs.


Asunto(s)
Leishmaniasis Visceral
2.
ACS Appl Mater Interfaces ; 13(39): 46478-46487, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569238

RESUMEN

A key issue in the development of sustainable Na-ion batteries (NIBs) is the stability of the electrolyte solution and its ability to form effective passivation layers on both cathode and anode. In this regard, the use of fluorine-based additives is considered a promising direction for improving electrode performance. Fluoroethylene carbonate (FEC) and trans-difluoroethylene carbonate (DFEC) were demonstrated as additives or cosolvents that form effective passivating surface films in Li-ion batteries. Their effect is evaluated for the first time with cathodes in NIBs. By application of systematic electrochemical and postmortem investigations, the role of fluorinated additives in the good performance of Na0.44MnO2 (NMO) cathodes was deciphered. Despite the significant improvement in the performance of Li-ion cells enabled by the use of FEC and FEC + DFEC, the highest stability for NIBs was observed when only FEC was used as an additive. Mechanistic insights and analytical characterizations were carried out to shed light on the inferior effect of FEC + DFEC in NIBs, in contrast to its positive effect on the stability of Li-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA