RESUMEN
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Asunto(s)
Envejecimiento , Epigénesis Genética , Animales , Envejecimiento/genética , Metilación de ADN , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genéticaRESUMEN
BACKGROUND: Scleral extracellular matrix (ECM) remodeling plays a crucial role in the development of myopia, particularly in ocular axial elongation. Thrombospondin-1 (THBS1), also known as TSP-1, is a significant cellular protein involved in matrix remodeling in various tissues. However, the specific role of THBS1 in myopia development remains unclear. METHOD: We employed the HumanNet database to predict genes related to myopic sclera remodeling, followed by screening and visualization of the predicted genes using bioinformatics tools. To investigate the potential target gene Thbs1, we utilized lens-induced myopia models in male C57BL/6J mice and performed Western blot analysis to detect the expression level of scleral THBS1 during myopia development. Additionally, we evaluated the effects of scleral THBS1 knockdown on myopia development through AAV sub-Tenon's injection. The refractive status and axial length were measured using a refractometer and SD-OCT system. RESULTS: During lens-induced myopia, THBS1 protein expression in the sclera was downregulated, particularly in the early stages of myopia induction. Moreover, the mice in the THBS1 knockdown group exhibited alterations in myopia development in both refraction and axial length changed compared to the control group. Western blotting analysis confirmed the effectiveness of AAV-mediated knockdown, demonstrating a decrease in COLA1 expression and an increase in MMP9 levels in the sclera. CONCLUSION: Our findings indicate that sclera THBS1 levels decreased during myopia development and subsequent THBS1 knockdown showed a decrease in scleral COLA1 expression. Taken together, these results suggest that THBS1 plays a role in maintaining the homeostasis of scleral extracellular matrix, and the reduction of THBS1 may promote the remodeling process and then affect ocular axial elongation during myopia progression.
Asunto(s)
Miopía , Esclerótica , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miopía/genética , Miopía/metabolismo , Esclerótica/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismoRESUMEN
Docosahexaenoic acid (DHA) and ultra-long-chain polyunsaturated fatty acids (ULC-PUFAs) are uniquely enriched in membrane phospholipids of retinal photoreceptors. Several studies have shown that di-DHA- and ULC-PUFA-containing phospholipids in photoreceptors have an important role in maintaining normal visual function; however, the molecular mechanisms underlying the synthesis and enrichment of these unique lipids in the retina, and their specific roles in retinal function remain unclear. Long-chain acyl-coenzyme A (CoA) synthetase 6 (ACSL6) preferentially converts DHA into DHA-CoA, which is a substrate during DHA-containing lipid biosynthesis. Here, we report that Acsl6 mRNA is expressed in the inner segment of photoreceptor cells and the retinal pigment epithelial cells, and genetic deletion of ACSL6 resulted in the selective depletion of di-DHA- and ULC-PUFA-containing phospholipids, but not mono-DHA-containing phospholipids in the retina. MALDI mass spectrometry imaging (MALDI-MSI) revealed the selective distribution of di-DHA- and ULC-PUFA-containing phospholipids in the photoreceptor outer segment (OS). Electroretinogram of Acsl6-/- mice exhibited photoreceptor cell-derived visual impairment, whereas the expression levels and localization of opsin proteins were unchanged. Acsl6-/- mice exhibited an age-dependent progressive decrease of the thickness of the outer nuclear layers, whereas the inner nuclear layers and OSs were normal. These results demonstrate that ACSL6 facilitates the local enrichment of di-DHA- and ULC-PUFA-containing phospholipids in the retina, which supports normal visual function and retinal homeostasis.
Asunto(s)
Ácidos Docosahexaenoicos , Fosfolípidos , Ratones , Animales , Fosfolípidos/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Retina/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ligasas/análisis , Ligasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismoRESUMEN
PURPOSE: Herein, we propose the use of the "KeraVio Ring", which is a portable, selfie-based, smartphone-attached corneal topography system that is based on the Placido ring videokeratoscope. The goal of this study was to evaluate and compare corneal parameters between KeraVio Ring and conventional corneal tomography images. METHODS: We designed the KeraVio Ring as a device comprising 3D-printed LED rings for generating Placido rings that can be attached to a smartphone. Two LED rings are attached to a cone-shaped device, and both corneas are illuminated. Selfies were taken using the KeraVio Ring attached to the smartphone without assistance from any of the examiners. Captured Placido rings on the cornea were analysed by intelligent software to calculate corneal parameters. Patients with normal, keratoconus, or LASIK-treated eyes were included. Anterior segment optical coherence tomography (AS-OCT) was also performed for each subject. RESULTS: We found highly significant correlations between the steepest and flattest keratometry, corneal astigmatism, and vector components obtained with the KeraVio Ring and AS-OCT. In subjects with normal, keratoconus, and LASIK-treated eyes, the mean difference in corneal astigmatism between the two devices was -0.8 ± 1.4 diopters (D) (95% limits of agreement (LoA), -3.6 to 2.0), -1.8 ± 3.7 D (95% LoA, -9.1 to 5.5), and -1.5 ± 1.3 D (95% LoA, -4.0 to 1.1), respectively. CONCLUSIONS: The experimental results showed that the corneal parameters obtained by the KeraVio Ring were correlated with those obtained with AS-OCT. The KeraVio Ring has the potential to address an unmet need by providing a tool for portable selfie-based corneal topography.
Asunto(s)
Córnea , Topografía de la Córnea , Queratocono , Teléfono Inteligente , Tomografía de Coherencia Óptica , Humanos , Topografía de la Córnea/instrumentación , Proyectos Piloto , Córnea/diagnóstico por imagen , Femenino , Masculino , Adulto , Queratocono/diagnóstico , Queratocono/fisiopatología , Tomografía de Coherencia Óptica/métodos , Tomografía de Coherencia Óptica/instrumentación , Adulto Joven , Diseño de Equipo , Reproducibilidad de los Resultados , Persona de Mediana EdadRESUMEN
Obesity and aging are major risk factors for several life-threatening diseases. Accumulating evidence from both rodents and humans suggests that the levels of nicotinamide adenine dinucleotide (NAD+), a regulator of many biological processes, declines in multiple organs and tissues with aging and obesity. Administration of an NAD+ intermediate, nicotinamide mononucleotide (NMN), replenishes intracellular NAD+ levels and mitigates aging- and obesity-associated derangements in animal models. In this human clinical study, we aimed to investigate the safety and effects of 8-week oral administration of NMN on biochemical, metabolic, ophthalmologic, and sleep quality parameters as well as on chronological alterations in NAD+ content in peripheral tissues. An 8-week, single-center, single-arm, open-label clinical trial was conducted. Eleven healthy, middle-aged Japanese men received two 125-mg NMN capsules once daily before breakfast. The 8-week NMN supplementation regimen was well-tolerated; NAD+ levels in peripheral blood mononuclear cells increased over the course of NMN administration. In participants with insulin oversecretion after oral glucose loading, NMN modestly attenuated postprandial hyperinsulinemia, a risk factor for coronary artery disease (n = 3). In conclusion, NMN overall safely and effectively boosted NAD+ biosynthesis in healthy, middle-aged Japanese men, showing its potential for alleviating postprandial hyperinsulinemia.
Asunto(s)
Hiperinsulinismo , NAD , Masculino , Persona de Mediana Edad , Animales , Humanos , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Leucocitos Mononucleares/metabolismo , Japón , Obesidad , Sueño , Suplementos DietéticosRESUMEN
Myopia has become a major public health concern, particularly across much of Asia. It has been shown in multiple studies that outdoor activity has a protective effect on myopia. Recent reports have shown that short-wavelength visible violet light is the component of sunlight that appears to play an important role in preventing myopia progression in mice, chicks, and humans. The mechanism underlying this effect has not been understood. Here, we show that violet light prevents lens defocus-induced myopia in mice. This violet light effect was dependent on both time of day and retinal expression of the violet light sensitive atypical opsin, neuropsin (OPN5). These findings identify Opn5-expressing retinal ganglion cells as crucial for emmetropization in mice and suggest a strategy for myopia prevention in humans.
Asunto(s)
Cristalino/metabolismo , Luz , Proteínas de la Membrana/metabolismo , Miopía/prevención & control , Opsinas/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Miopía/metabolismo , Refracción Ocular , Tomografía de Coherencia Óptica , Cuerpo VítreoRESUMEN
Purpose: Myopia, or nearsightedness, is the most common form of refractive error and is increasing in prevalence. While significant efforts have been made to identify genetic variants that predispose individuals to myopia, these variants are believed to account for only a small portion of the myopia prevalence, leading to a feedback theory of emmetropization, which depends on the active perception of environmental visual cues. Consequently, there has been renewed interest in studying myopia in the context of light perception, beginning with the opsin family of G-protein coupled receptors (GPCRs). Refractive phenotypes have been characterized in every opsin signaling pathway studied, leaving only Opsin 3 (OPN3), the most widely expressed and blue-light sensing noncanonical opsin, to be investigated for function in the eye and refraction. Methods: Opn3 expression was assessed in various ocular tissues using an Opn3eGFP reporter. Weekly refractive development in Opn3 retinal and germline mutants from 3 to 9 weeks of age was measured using an infrared photorefractor and spectral domain optical coherence tomography (SD-OCT). Susceptibility to lens-induced myopia was then assessed using skull-mounted goggles with a -30 diopter experimental and a 0 diopter control lens. Mouse eye biometry was similarly tracked from 3 to 6 weeks. A myopia gene expression signature was assessed 24 h after lens induction for germline mutants to further assess myopia-induced changes. Results: Opn3 was found to be expressed in a subset of retinal ganglion cells and a limited number of choroidal cells. Based on an assessment of Opn3 mutants, the OPN3 germline, but not retina conditional Opn3 knockout, exhibits a refractive myopia phenotype, which manifests in decreased lens thickness, shallower aqueous compartment depth, and shorter axial length, atypical of traditional axial myopias. Despite the short axial length, Opn3 null eyes demonstrate normal axial elongation in response to myopia induction and mild changes in choroidal thinning and myopic shift, suggesting that susceptibility to lens-induced myopia is largely unchanged. Additionally, the Opn3 null retinal gene expression signature in response to induced myopia after 24 h is distinct, with opposing Ctgf, Cx43, and Egr1 polarity compared to controls. Conclusions: The data suggest that an OPN3 expression domain outside the retina can control lens shape and thus the refractive performance of the eye. Prior to this study, the role of Opn3 in the eye had not been investigated. This work adds OPN3 to the list of opsin family GPCRs that are implicated in emmetropization and myopia. Further, the work to exclude retinal OPN3 as the contributing domain in this refractive phenotype is unique and suggests a distinct mechanism when compared to other opsins.
Asunto(s)
Miopía , Errores de Refracción , Animales , Ratones , Miopía/genética , Refracción Ocular , Retina , Opsinas/genética , Opsinas de BastonesRESUMEN
The prevalence of myopia has been steadily increasing for several decades, and this condition can cause extensive medical and economic issues in society. Exposure to violet light (VL), a short wavelength (360-400 nm) of visible light from sunlight, has been suggested as an effective preventive and suppressive treatments for the development and progression of myopia. However, the clinical application of VL remains unclear. In this study, we aimed to investigate the preventive and suppressive effects of VL on myopia progression. Various transmittances of VL (40%, 70%, and 100%) were tested in C57BL/6J mice with lens-induced myopia (LIM). Changes in the refractive error, axial length, and choroid thickness during the 3-week LIM were measured. The myopic shift in refractive error and difference in axial length between the 0 and -30 diopter lens was lessened in a transmission-dependent manner. Choroidal thinning, which was observed in myopic conditions, was suppressed by VL exposure and affected by its transmission. The results suggest that myopia progression can be managed using VL transmittance. Therefore, these factors should be considered for the prevention and treatment of myopia.
Asunto(s)
Cristalino , Miopía , Animales , Ratones , Ratones Endogámicos C57BL , Miopía/prevención & control , Luz , Coroides , Longitud Axial del OjoRESUMEN
Retinal ischemia-reperfusion (I/R) injury is a common cause of visual impairment. To date, no effective treatment is available for retinal I/R injury. In addition, the precise pathological mechanisms still need to be established. Recently, pemafibrate, a peroxisome proliferator-activated receptor α (PPARα) modulator, was shown to be a promising drug for retinal ischemia. However, the role of pemafibrate in preventing retinal I/R injury has not been documented. Here, we investigated how retinal degeneration occurs in a mouse model of retinal I/R injury by elevation of intraocular pressure and examined whether pemafibrate could be beneficial against retinal degeneration. Adult mice were orally administered pemafibrate (0.5 mg/kg/day) for 4 days, followed by retinal I/R injury. The mice were continuously administered pemafibrate once every day until the end of the experiments. Retinal functional changes were measured using electroretinography. Retina, liver, and serum samples were used for western blotting, quantitative PCR, immunohistochemistry, or enzyme linked immunosorbent assay. Retinal degeneration induced by retinal inflammation was prevented by pemafibrate administration. Pemafibrate administration increased the hepatic PPARα target gene expression and serum levels of fibroblast growth factor 21, a neuroprotective molecule in the eye. The expression of hypoxia-response and pro-and anti-apoptotic/inflammatory genes increased in the retina following retinal I/R injury; however, these changes were modulated by pemafibrate administration. In conclusion, pemafibrate is a promising preventive drug for ischemic retinopathies.
Asunto(s)
Daño por Reperfusión , Degeneración Retiniana , Animales , Benzoxazoles , Butiratos , Modelos Animales de Enfermedad , Isquemia , Ratones , PPAR alfa/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismoRESUMEN
Myopia is increasing worldwide and its preventable measure should urgently be pursued. N-3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti-inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens-induced myopia (LIM) model was prepared using C57B L6/J 3-week-old mice, which were equipped with a -30 diopter lens to the right eye. Chows containing two different ratios of n-3/n-6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n-3 PUFA-enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat-1 transgenic mice, which can produce n-3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n-3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15-dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.
Asunto(s)
Ácidos Grasos Omega-3 , Miopía , Animales , Coroides/metabolismo , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Lipidómica , Ratones , Ratones Transgénicos , Miopía/metabolismo , Miopía/prevención & controlRESUMEN
PURPOSE: Apart from genetic factors, recent animal studies on myopia have focused on localised mechanisms. In this study, we aimed to examine the contralateral effects of monocular experimental myopia and recovery, which cannot be explained by a mere local mechanism. METHODS: One eye of 3-week-old C57BL/6 male mice was fitted with a -30 dioptre (D) lens. The mice were distributed into two groups based on different conditions in the contralateral eye: either no lens (NLC) (n = 10) or a Plano lens on the contralateral eye (PLC) group (n = 6). Mice receiving no treatment on either eye were set as a control group (n = 6). Lenses were removed after 3 weeks of myopia induction. All mice were allowed to recover for 1 week in the same environment. Refractive status, axial length (AL) and choroidal thickness were measured before myopia induction, after 1 and 3 weeks of lens wear and after 1 week of recovery. RESULTS: One week after removing the lenses, complete recovery was observed in the eyes that wore the -30 D lenses. In both the PLC and NLC groups, the refractive status showed a myopic shift after lens removal. Additionally, the choroid was significantly thinned in these eyes. The -30 D wearing eye showed a significant increase in AL after 3 weeks of lens wear. While the AL of the -30 D wearing eye ceased to grow after the lens was removed, the AL in the PLC and NLC contralateral eyes increased, and the binocular ALs gradually converged. CONCLUSIONS: Recovery of lens-induced myopia was observed in mouse models. In the fellow eyes, the effects, including thinning of the choroid and changes in refractive status, were triggered by contralateral visual cues.
Asunto(s)
Lentes de Contacto , Miopía , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ojo , Miopía/etiología , Miopía/genética , Refracción Ocular , Coroides , Modelos Animales de EnfermedadRESUMEN
Disorders in the development and regulation of blood vessels are involved in various ocular disorders, such as persistent hyperplastic primary vitreous, familial exudative vitreoretinopathy, and choroidal dystrophy. Thus, the appropriate regulation of vascular development is essential for healthy ocular functions. However, regulation of the developing choroidal circulation system has not been well studied compared with vascular regulation in the vitreous and the retina. The choroid is a vascular-rich and uniquely structured tissue supplying oxygen and nutrients to the retina, and hypoplasia and the degeneration of the choroid are involved in many ocular disorders. Therefore, understanding the developing choroidal circulation system expands our knowledge of ocular development and supports our understanding of ocular disorders. In this review, we examine studies on regulating the developing choroidal circulation system at the cellular and molecular levels and discuss the relevance to human diseases.
Asunto(s)
Enfermedades de la Coroides , Oftalmopatías , Humanos , Retina , Coroides/irrigación sanguíneaRESUMEN
Myopia is becoming a leading cause of vision impairment. An effective intervention is needed. Lactoferrin (LF) is a protein that has been reported to inhibit myopia progression when taken orally. This study looked at the effects of different forms of LF, such as native LF and digested LF, on myopia in mice. Mice were given different forms of LF from 3 weeks of age, and myopia was induced with minus lenses from 4 weeks of age. Results showed that mice given digested LF or holo-LF had a less elongated axial length and thinned choroid, compared to those given native-LF. Gene expression analysis also showed that the groups given native-LF and its derivatives had lower levels of certain cytokines and growth factors associated with myopia. These results suggest that myopia can be more effectively suppressed by digested LF or holo-LF than native-LF.
Asunto(s)
Lactoferrina , Ratones , Animales , Lactoferrina/farmacología , Lactoferrina/metabolismoRESUMEN
Retinal ischemia is a leading cause of irreversible blindness worldwide. Inner retinal dysfunction including loss of retinal ganglion cells is encountered in a number of retinal ischemic disorders. We previously reported administration of two different hypoxia-inducible factor (HIF) inhibitors exerted neuroprotective effects in a murine model of retinal ischemia/reperfusion (I/R) which mimics these disorders, as inner retinal degeneration could be involved in pathological HIF induction. However, this notion needs further investigation. Therefore, in this study, we attempted to use retina-specific Hif-1α conditional knockout (cKO) mice to uncover this notion more clearly under the same condition. Hif-1α cKO mice showed inner retinal neurodegeneration to a lesser extent than control mice. Hif-1α depletion in a murine 661W retinal cell line reduced cell death under pseudohypoxic and hypoxic conditions. Among hypoxia-related genes, the expression of BCL2 19 kDa protein-interacting protein 3 (Bnip3) was substantially upregulated in the inner retinal layer after retinal I/R. In this regard, we further examined Bnip3 depletion in retinal neurons in vitro and in vivo and found the similar neuroprotective effects. Our results support the notion that the HIF-1α/BNIP3 pathway may have a critical role in inner retinal neurodegeneration, which can be linked with the development of new promising therapeutics for inner retinal ischemic disorders.
Asunto(s)
Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Neuroprotección , Retina , Degeneración Retiniana/metabolismo , Animales , Línea Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retina/metabolismo , Retina/patologíaRESUMEN
The purpose of this study was to investigate the changes in E-FABP in the salivary and lacrimal glands of the Sjögren syndrome (SS) model non-obese diabetic mice (NOD). Cotton thread and ocular vital staining tests were performed on 10-week NOD male mice (n = 24) and age- and sex-matched wild-type (WT) mice (n = 25). Tear and saliva samples were collected at sacrifice for E-FABP ELISA assays. Salivary and lacrimal gland specimens underwent immunohistochemistry stainings for E-FABP. Real-time RT-PCR was also performed for the quantification of mRNA expression levels in the salivary and lacrimal glands. Corneal vital staining scores in the NOD mice were significantly higher compared with those for the wild-type mice (p = 0.0001). The mean tear E-FABP level showed a significantly lower concentration in the NOD mice (p = 0.001). The mean saliva E-FABP level also showed a significantly lower concentration in the NOD mice (p = 0.04). Immunohistochemistry revealed intense E-FABP staining in the LG acinar epithelium and less intense staining in the acinar epitheliae of the SGs in the NOD mice compared to the WT mice. Real-time RT-PCR for the mRNA expression of E-FABP showed a significantly decreased expression in the SG and a significant increase in the LG of the NOD mice compared to the WT mice. In conclusion, the E-FABP showed marked alterations in the tear film, saliva, lacrimal, and salivary glands of the NOD mouse, which may help explain the ocular surface changes in relation to the dry eye disease in this SS model mouse and keratoconjunctivitis sicca in SS patients.
Asunto(s)
Diabetes Mellitus Experimental , Síndromes de Ojo Seco , Aparato Lagrimal , Síndrome de Sjögren , Animales , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Aparato Lagrimal/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , ARN Mensajero/genética , ARN Mensajero/metabolismo , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismoRESUMEN
Tear fluid secreted from the exocrine lacrimal gland (LG) has an essential role in maintaining a homeostatic environment for a healthy ocular surface. Tear secretion is regulated by the sympathetic and parasympathetic components of the autonomic nervous system, although the contribution of each component is not fully understood. To investigate LG innervation, we identified sympathetic and parasympathetic postganglionic nerves, specifically innervating the mouse LG, by injecting a retrograde neuronal tracer into the LG. Interruption of neural stimuli to the LG by the denervation of these postganglionic nerves immediately and chronically decreased tear secretion, leading to LG atrophy along with destruction of the lobular structure. This investigation also found that parasympathetic, but not sympathetic, innervation was involved in these alterations.
Asunto(s)
Aparato Lagrimal/inervación , Aparato Lagrimal/metabolismo , Lágrimas/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Sistema Nervioso Parasimpático/anatomía & histología , Sistema Nervioso Parasimpático/fisiologíaRESUMEN
Although diurnal variations have been observed in tear film parameters in various species, the molecular mechanisms that control circadian tear secretion remain unclear. The aim of our study was to evaluate the role of clock genes in the lacrimal gland (LG) in regulation of tear secretion. Tear volume was measured by cotton thread test in core clock genes deficient (Cry1-/-Cry2-/--) mice which are behaviorally arrhythmic. Real-time quantitative RT-PCR was used to examine expression profiles of core clock genes in the LG including Per1, Per2, Per3, Clock, Bmal1. All experiments were performed under a 12 h of light and 12 h of darkness (LD) and constant dark (DD) conditions. Under both LD and DD conditions, diurnal and circadian rhythms were observed in tear secretion of wild-type mice with tear volume increased in the objective and subjective night while disruption in diurnal and circadian variations of tear secretion were found in Cry1-/-Cry2-/--mice. In wild-type mice, the expression level of major clock genes in the LG showed oscillatory patterns under both LD and DD conditions. In contrast, expression clock genes in the lacrimal gland of Cry1-/-Cry2-/-- mice showed complete loss of oscillation regardless of environmental light conditions. These findings confirmed the presence of diurnal and circadian rhythms of tear secretion and provided evidences supporting a critical role for the clock in the control of tear secretion.
Asunto(s)
Relojes Circadianos/fisiología , Síndromes de Ojo Seco/genética , Proteínas del Ojo/genética , Aparato Lagrimal/metabolismo , Lágrimas/metabolismo , Animales , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Proteínas del Ojo/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genéticaRESUMEN
Progression of blinding diseases, such as age-related macular degeneration, is accelerated by light exposure. However, no particular intervention is applied to the photostress. Here, we report neuroprotective effects of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), on light-induced visual function impairment, photoreceptor disorders and death in mice. Increase in retinal ATP levels in response to photostress was transient, because oxygen consumption rate (OCR) and cytochrome c oxidase (CcO) activity were reduced under photostress. However, AICAR treatment preserved OCR, CcO activity, and high levels of retinal ATP after light exposure. AMPK knockdown in the photoreceptor-derived cell line revealed that AMPK targeted CcO activity. Further, our data indicated that photostress reduced mitochondrial respiratory function and ATP levels, while AICAR treatment promoted neuronal survival and retained visual function, stabilizing ATP levels through preserved CcO activity. The current study has provided proof of concept for providing cells with sufficient energy to promote cell survival in the presence of cellular stress. This is in contrast to the previous reports which primarily investigated therapeutic approaches to suppress stress signals. Hence, stabilization of the ATP supply may serve as a novel therapeutic approach to support tissue survival under stress and prevent neurodegeneration.
Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Degeneración Macular/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Proteínas Quinasas/metabolismo , Ribonucleótidos/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Aminoimidazol Carboxamida/farmacología , Aminoimidazol Carboxamida/uso terapéutico , Animales , Línea Celular , Complejo IV de Transporte de Electrones/metabolismo , Degeneración Macular/etiología , Degeneración Macular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Fármacos Neuroprotectores/uso terapéutico , Consumo de Oxígeno , Proteínas Quinasas/genética , Retina/efectos de los fármacos , Retina/metabolismo , Retina/efectos de la radiación , Ribonucleótidos/uso terapéutico , Rayos Ultravioleta/efectos adversosRESUMEN
Lipid mediators play important roles in regulating inflammatory responses and tissue homeostasis. Since 12/15-lipoxygenase (12/15-LOX)-derived lipid mediators such as lipoxin A4 (LXA4 ) and protectin D1 (PD1) protect against corneal epithelial cell damage, the major cell types that express 12/15-LOX and contribute to the corneal wound healing process are of particular interest. Here, we found that eosinophils were the major cell type expressing 12/15-LOX during the corneal wound healing process. Eosinophils were recruited into the conjunctiva after corneal epithelium wounding, and eosinophil-deficient and/or eosinophil-specific 12/15-LOX knockout mice showed delayed corneal wound healing compared with wild-type mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based mediator lipidomics revealed that a series of 12/15-LOX-derived mediators were significantly decreased in eosinophil-deficient mice and topical application of 17-hydroxydocosahexaenoic acid (17-HDoHE), a major 12/15-LOX-derived product, restored the phenotype. These results indicate that 12/15-LOX-expressing eosinophils, by locally producing pro-resolving mediators, significantly contribute to the corneal wound healing process in the eye.