Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 52(4): 495-505, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24095279

RESUMEN

The mTORC1 kinase is a master growth regulator that senses numerous environmental cues, including amino acids. The Rag GTPases interact with mTORC1 and signal amino acid sufficiency by promoting the translocation of mTORC1 to the lysosomal surface, its site of activation. The Rags are unusual GTPases in that they function as obligate heterodimers, which consist of RagA or B bound to RagC or D. While the loading of RagA/B with GTP initiates amino acid signaling to mTORC1, the role of RagC/D is unknown. Here, we show that RagC/D is a key regulator of the interaction of mTORC1 with the Rag heterodimer and that, unexpectedly, RagC/D must be GDP bound for the interaction to occur. We identify FLCN and its binding partners, FNIP1/2, as Rag-interacting proteins with GAP activity for RagC/D, but not RagA/B. Thus, we reveal a role for RagC/D in mTORC1 activation and a molecular function for the FLCN tumor suppressor.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteínas Portadoras/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Unión Proteica , Transporte de Proteínas , Transducción de Señal
2.
Semin Cell Dev Biol ; 43: 22-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26277542

RESUMEN

Amino acids have a dual role in cellular metabolism, as they are both the building blocks for protein synthesis and intermediate metabolites which fuel other biosynthetic reactions. Recent work has demonstrated that deregulation of both arms of amino acid management are common alterations seen in cancer. Among the most highly consumed nutrients by cancer cells are the amino acids glutamine and serine, and the biosynthetic pathways that metabolize them are required in various cancer subtypes and the object of current efforts to target cancer metabolism. Also altered in cancer are components of the machinery which sense amino acid sufficiency, nucleated by the mechanistic target of rapamycin (mTOR), a key regulator of cell growth via modulation of key processes including protein synthesis and autophagy. The precise ways in which altered amino acid management supports cellular transformation remain mostly elusive, and a fuller mechanistic understanding of these processes will be important for efforts to exploit such alterations for cancer therapy.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Glutamina/metabolismo , Neoplasias/patología , Biosíntesis de Proteínas/fisiología , Serina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Transducción de Señal/fisiología
3.
Nature ; 476(7360): 346-50, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21760589

RESUMEN

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Genómica , Serina/biosíntesis , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Melanoma/enzimología , Melanoma/genética , Ratones , Trasplante de Neoplasias , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Interferencia de ARN
4.
Dev Cell ; 14(2): 298-311, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18267097

RESUMEN

Developing myocardial cells respond to signals from the endocardial layer to form a network of trabeculae that characterize the ventricles of the vertebrate heart. Abnormal myocardial trabeculation results in specific cardiomyopathies in humans and yet trabecular development is poorly understood. We show that trabeculation requires Brg1, a chromatin remodeling protein, to repress ADAMTS1 expression in the endocardium that overlies the developing trabeculae. Repression of ADAMTS1, a secreted matrix metalloproteinase, allows the establishment of an extracellular environment in the cardiac jelly that supports trabecular growth. Later during embryogenesis, ADAMTS1 expression initiates in the endocardium to degrade the cardiac jelly and prevent excessive trabeculation. Thus, the composition of cardiac jelly essential for myocardial morphogenesis is dynamically controlled by ADAMTS1 and its chromatin-based transcriptional regulation. Modification of the intervening microenvironment provides a mechanism by which chromatin regulation within one tissue layer coordinates the morphogenesis of an adjacent layer.


Asunto(s)
Proteínas ADAM/metabolismo , ADN Helicasas/metabolismo , Endocardio/metabolismo , Corazón/embriología , Morfogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS1 , Animales , Línea Celular , ADN Helicasas/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Endotelio/citología , Endotelio/metabolismo , Eritropoyesis , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/embriología , Humanos , Ratones , Neovascularización Fisiológica , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Saco Vitelino/irrigación sanguínea
5.
Psychiatr Serv ; 74(4): 358-364, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36065582

RESUMEN

OBJECTIVE: In this study, the authors assessed return on investment (ROI) associated with a forensic assertive community treatment (FACT) program. METHODS: A retrospective secondary data analysis of a randomized controlled trial comprising 70 legal-involved patients with severe mental illness was conducted in Rochester, New York. Patients were randomly assigned to receive either FACT or outpatient psychiatric treatment including intensive case management. Unit of service costs associated with psychiatric emergency department visits, psychiatric inpatient days, and days in jail were obtained from records of New York State Medicaid and the Department of Corrections. The total dollar value difference between the two trial arms calculated on a per-patient-per-year (PPPY) basis constituted the return from the FACT intervention. The FACT investment cost was defined by the total additional PPPY cost associated with FACT implementation relative to the control group. ROI was calculated by dividing the return by the investment cost. RESULTS: The estimated return from FACT was $27,588 PPPY (in 2019 dollars; 95% confidence interval [CI]=$3,262-$51,913), which was driven largely by reductions in psychiatric inpatient days, and the estimated investment cost was $18,440 PPPY (95% CI=$15,215-$21,665), implying an ROI of 1.50 (95% CI=0.35-2.97) for FACT. CONCLUSIONS: The Rochester FACT program was associated with approximately $1.50 return for every $1 spent on its implementation, even without considering potential returns from other sources, including reductions in acute medical care, crime-related damages, and public safety costs. ROI estimates were highly dependent on context-specific factors, particularly Medicaid reimbursement rates for assertive community treatment and hospital stays.


Asunto(s)
Servicios Comunitarios de Salud Mental , Trastornos Mentales , Estados Unidos , Humanos , Estudios Retrospectivos , Trastornos Mentales/terapia , Tiempo de Internación , Costos y Análisis de Costo
6.
Proc Natl Acad Sci U S A ; 106(47): 19889-94, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19897725

RESUMEN

Urodele amphibians and teleost fish regenerate amputated body parts via a process called epimorphic regeneration. A hallmark of this phenomenon is the reactivation of silenced developmental regulatory genes that previously functioned during embryonic patterning. We demonstrate that histone modifications silence promoters of numerous genes involved in zebrafish caudal fin regeneration. Silenced developmental regulatory genes contain bivalent me(3)K4/me(3)K27 H3 histone modifications created by the concerted action of Polycomb (PcG) and Trithorax histone methyltransferases. During regeneration, this silent, bivalent chromatin is converted to an active state by loss of repressive me(3)K27 H3 modifications, occurring at numerous genes that appear to function during regeneration. Loss-of-function studies demonstrate a requirement for a me(3)K27 H3 demethylase during fin regeneration. These results indicate that histone modifications at discreet genomic positions may serve as a crucial regulatory event in the initiation of fin regeneration.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Regeneración/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Cromatina/metabolismo , Extremidades/anatomía & histología , Extremidades/fisiología , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Lisina/metabolismo , Metilación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Regiones Promotoras Genéticas , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética
7.
Biochem J ; 402(2): 279-90, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17059388

RESUMEN

The glucose transporter GLUT4 and the aminopeptidase IRAP (insulin-responsive aminopeptidase) are the major cargo proteins of GSVs (GLUT4 storage vesicles) in adipocytes and myocytes. In the basal state, most GSVs are sequestered in perinuclear and other cytosolic compartments. Following insulin stimulation, GSVs undergo exocytic translocation to insert GLUT4 and IRAP into the plasma membrane. The mechanisms regulating GSV trafficking are not fully defined. In the present study, using 3T3-L1 adipocytes transfected with siRNAs (small interfering RNAs), we show that insulin-stimulated IRAP translocation remained intact despite substantial GLUT4 knockdown. By contrast, insulin-stimulated GLUT4 translocation was impaired upon IRAP knockdown, indicating that IRAP plays a role in GSV trafficking. We also show that knockdown of tankyrase, a Golgi-associated IRAP-binding protein that co-localizes with perinuclear GSVs, attenuated insulin-stimulated GSV translocation and glucose uptake without disrupting insulin-induced phosphorylation cascades. Moreover, iodixanol density gradient analyses revealed that tankyrase knockdown altered the basal-state partitioning of GLUT4 and IRAP within endosomal compartments, apparently by shifting both proteins toward less buoyant compartments. Importantly, the afore-mentioned effects of tankyrase knockdown were reproduced by treating adipocytes with PJ34, a general PARP (poly-ADP-ribose polymerase) inhibitor that abrogated tankyrase-mediated protein modification known as poly-ADP-ribosylation. Collectively, these findings suggest that physiological GSV trafficking depends in part on the presence of IRAP in these vesicles, and that this process is regulated by tankyrase and probably its PARP activity.


Asunto(s)
Cistinil Aminopeptidasa/metabolismo , Exocitosis/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Tanquirasas/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Línea Celular , Cistinil Aminopeptidasa/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Ratones , Fosforilación/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Tanquirasas/genética
8.
Biochem J ; 399(3): 415-25, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16884355

RESUMEN

PARsylation [poly(ADP-ribosyl)ation] of proteins is implicated in the regulation of diverse physiological processes. Tankyrase is a molecular scaffold with this catalytic activity and has been proposed as a regulator of vesicular trafficking on the basis, in part, of its Golgi localization in non-polarized cells. Little is known about tankyrase localization in polarized epithelial cells. Using MDCK (Madin-Darby canine kidney) cells as a model, we found that E-cadherin-mediated intercellular adhesion recruits tankyrase from the cytoplasm to the lateral membrane (including the tight junction), where it stably associates with detergent-insoluble structures. This recruitment is mostly completed within 8 h of calcium-induced formation of cell-cell contact. Conversely, when intercellular adhesion is disrupted by calcium deprivation, tankyrase returns from the lateral membrane to the cytoplasm and becomes more soluble in detergents. The PARsylating activity of tankyrase promotes its dissociation from the lateral membrane as well as its ubiquitination and proteasome-mediated degradation, resulting in an apparent protein half-life of approximately 2 h. Inhibition of tankyrase autoPARsylation using H2O2-induced NAD+ depletion or PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride] treatment results in tankyrase stabilization and accumulation at the lateral membrane. By contrast, stabilization through proteasome inhibition results in tankyrase accumulation in the cytoplasm. These data suggest that cell-cell contact promotes tankyrase association with the lateral membrane, whereas PARsylating activity promotes translocation to the cytosol, which is followed by ubiquitination and proteasome-mediated degradation. Since the lateral membrane is a sorting station that ensures domain-specific delivery of basolateral membrane proteins, the regulated tankyrase recruitment to this site is consistent with a role in polarized protein targeting in epithelial cells.


Asunto(s)
Adhesión Celular/fisiología , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Tanquirasas/fisiología , Uniones Adherentes/fisiología , Animales , Cadherinas/fisiología , Cloruro de Calcio/farmacología , Línea Celular , Polaridad Celular , Citosol/metabolismo , Detergentes/farmacología , Perros , Humanos , Riñón , Microscopía Fluorescente , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Tanquirasas/genética , Tanquirasas/metabolismo , Uniones Estrechas/fisiología , Ácidos Triyodobenzoicos/metabolismo , Ubiquitina/metabolismo
9.
Science ; 347(6218): 188-94, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25567906

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo , Lisosomas/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Arginina/deficiencia , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA