Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(1): 410-417, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31860318

RESUMEN

Photoluminescence (PL) from single-wall carbon nanotubes (SWCNTs) enables structural identification, but to derive the content rate of the specific chirality species it is necessary to know the quantum yield of each chirality. However, in the PL of SWCNTs, because the Stokes shift is small, the photon reabsorption effect is dominant and the apparent PL spectral shape and emission intensity are greatly modified depending on the concentration. This problem makes quantitative identification of SWCNTs by PL difficult. In this study, the concentration dependence of the PL of SWCNTs separated into a few chiralities was analyzed in detail, including the effect of reabsorption. It is clear that all changes in the PL spectrum occurring in the high concentration range can be explained simply by the reabsorption effect, and additional effects such as Coulomb interactions between SWCNTs can be negligible. Furthermore, a reliable quantum yield was derived from the emission intensity corrected for the reabsorption effect. The PL quantum yield varied with SWCNT chirality and exhibited a clear "family pattern". This is consistent with the theoretical report showing that the chirality-dependent PL quantum yield is dominated mainly by relaxation by optical phonons from E22 to E11.

2.
J Phys Chem Lett ; 14(25): 5955-5959, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37345759

RESUMEN

We report the near-infrared (NIR) photoluminescence of single-wall carbon nanotubes (SWCNTs) generated by chemical energy derived from enzymatic reactions. NIR photoluminescence from SWCNTs has attracted much attention for medical applications, such as bioimaging and biosensors, because of its high transparency and low scattering in biological tissues; however, visible excitation light cannot reach deep tissues. We developed a novel method in which the NIR luminescence of SWCNTs is powered by the biochemical reaction of luciferin/luciferase from fireflies. The luminescence could be detected by a highly sensitive measurement system using an infrared camera, and the optimal conditions for luminescence were investigated. Spectroscopic analysis of the NIR luminescence using chirality-sorted SWCNTs confirmed that the luminescence was derived from SWCNTs. This is the first report achieving NIR photoluminescence of SWCNTs using chemical energy, which does not require external energies, e.g., excitation light or electronic power, and will be applicable to biological imaging and sensing.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Luciferinas , Luz , Luminiscencia , Luciferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA