Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(D1): D1152-D1159, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33035337

RESUMEN

The current state of the COVID-19 pandemic is a global health crisis. To fight the novel coronavirus, one of the best-known ways is to block enzymes essential for virus replication. Currently, we know that the SARS-CoV-2 virus encodes about 29 proteins such as spike protein, 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), Papain-like protease (PLpro), and nucleocapsid (N) protein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) for viral entry and transmembrane serine protease family member II (TMPRSS2) for spike protein priming. Thus in order to speed up the discovery of potential drugs, we develop DockCoV2, a drug database for SARS-CoV-2. DockCoV2 focuses on predicting the binding affinity of FDA-approved and Taiwan National Health Insurance (NHI) drugs with the seven proteins mentioned above. This database contains a total of 3,109 drugs. DockCoV2 is easy to use and search against, is well cross-linked to external databases, and provides the state-of-the-art prediction results in one site. Users can download their drug-protein docking data of interest and examine additional drug-related information on DockCoV2. Furthermore, DockCoV2 provides experimental information to help users understand which drugs have already been reported to be effective against MERS or SARS-CoV. DockCoV2 is available at https://covirus.cc/drugs/.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Bases de Datos Farmacéuticas/estadística & datos numéricos , SARS-CoV-2/efectos de los fármacos , Antivirales/metabolismo , COVID-19/epidemiología , COVID-19/virología , Curaduría de Datos/métodos , Minería de Datos/métodos , Humanos , Internet , Modelos Moleculares , Pandemias , Unión Proteica/efectos de los fármacos , Dominios Proteicos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
Med Phys ; 49(7): 4293-4304, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35488864

RESUMEN

BACKGROUND: Dose deposition characteristics of proton radiation can be advantageous over photons. Proton treatment planning, however, poses additional challenges for the planners. Proton therapy is usually delivered with only a small number of beam angles, and the quality of a proton treatment plan is largely determined by the beam angles employed. Finding the optimal beam angles for a proton treatment plan requires time and experience, motivating the investigation of automatic beam angle selection methods. PURPOSE: A deep learning-based approach to automatic beam angle selection is proposed for the proton pencil-beam scanning treatment planning of liver lesions. METHODS: We cast beam-angle selection as a multi-label classification problem. To account for angular boundary discontinuity, the underlying convolution neural network is trained with the proposed Circular Earth Mover's Distance-based regularization and multi-label circular-smooth label technique. Furthermore, an analytical algorithm emulating proton treatment planners' clinical practice is employed in post-processing to improve the output of the model. Forty-nine patients that received proton liver treatments between 2017 and 2020 were randomly divided into training (n = 31), validation (n = 7), and test sets (n = 11). AI-selected beam angles were compared with those angles selected by human planners, and the dosimetric outcome was investigated by creating plans using knowledge-based treatment planning. RESULTS: For 7 of the 11 cases in the test set, AI-selected beam angles agreed with those chosen by human planners to within 20° (median angle difference = 10°; mean = 18.6°). Moreover, out of the total 22 beam angles predicted by the model, 15 (68%) were within 10° of the human-selected angles. The high correlation in beam angles resulted in comparable dosimetric statistics between proton treatment plans generated using AI- and human-selected angles. For the cases with beam angle differences exceeding 20°, the dosimetric analysis showed similar plan quality although with different emphases on organ-at-risk sparing. CONCLUSIONS: This pilot study demonstrated the feasibility of a novel deep learning-based beam angle selection technique. Testing on liver cancer patients showed that the resulting plans were clinically viable with comparable dosimetric quality to those using human-selected beam angles. In tandem with auto-contouring and knowledge-based treatment planning tools, the proposed model could represent a pathway for nearly fully automated treatment planning in proton therapy.


Asunto(s)
Aprendizaje Profundo , Hígado , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Proyectos Piloto , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA