Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biopharm Stat ; : 1-13, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832723

RESUMEN

Due to increased use of gene sequencing techniques, understanding of cancer on a molecular level has evolved, in terms of both diagnosis and evaluation in response to initial therapies. In parallel, clinical trials meant to evaluate molecularly-driven interventions through assessment of both treatment effects and putative predictive biomarker effects are being employed to advance the goals of precision medicine. Basket trials investigate one or more biomarker-targeted therapies across multiple cancer types in a tumor location agnostic fashion. The review article offers an overview of the traditional forms of such designs, the practical challenges facing each type of design, and then review novel adaptations proposed in the last few years, categorized into Bayesian and Classical Frequentist perspectives. The review article concludes by summarizing potential advantages and limitations of the new trial design solutions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38483751

RESUMEN

There are two dominant approaches to implementing permanent supportive housing (PSH), namely place-based (PB) and scattered-site (SS). Formal guidance does not distinguish between these two models and only specifies that PSH should be reserved for those who are most vulnerable with complex health needs. To consider both system- and self-selection factors that may affect housing assignment, this study applied the Gelberg-Anderson behavioral model for vulnerable populations to compare predisposing, enabling, and need factors among people experiencing homelessness (PE) by whether they were assigned to PB-PSH (n = 272) or SS-PSH (n = 185) in Los Angeles County during the COVID-19 pandemic. This exploratory, observational study also included those who were approved but did not receive PSH (n = 94). Results show that there are notable differences between (a) those who received PSH versus those who did not, and (b) those in PB-PSH versus SS-PSH. Specifically, PEH who received PSH were more likely to be white, US-born, have any physical health condition, and have lower health activation scores. PEH who received PB- versus SS-PSH were more likely to be older, Black, have any alcohol use disorder, and have higher health activation scores. These findings suggest that homeless service systems may consider PB-PSH more appropriate for PEH with higher needs but also raises important questions about how race may be a factor in the type of PSH that PEH receive and whether PSH is received at all.

3.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960407

RESUMEN

Alzheimer's disease (AD), a neuropsychiatric disorder, continually arises in the elderly. To date, no targeted medications have been developed for AD. Early and fast diagnosis of AD plays a pivotal role in identifying potential AD patients, enabling timely medical interventions, and mitigating disease progression. Computer-aided diagnosis (CAD) becomes possible with the burgeoning of deep learning. However, the existing CAD models for processing 3D Alzheimer's disease images usually have the problems of slow convergence, disappearance of gradient, and falling into local optimum. This makes the training of 3D diagnosis models need a lot of time, and the accuracy is often poor. In this paper, a novel 3D aggregated residual network with accelerated mirror descent optimization is proposed for diagnosing AD. First, a novel unbiased subgradient accelerated mirror descent (SAMD) optimization algorithm is proposed to speed up diagnosis network training. By optimizing the nonlinear projection process, our proposed algorithm can avoid the occurrence of the local optimum in the non-Euclidean distance metric. The most notable aspect is that, to the best of our knowledge, this is the pioneering attempt to optimize the AD diagnosis training process by improving the optimization algorithm. Then, we provide a rigorous proof of the SAMD's convergence, and the convergence of SAMD is better than any existing gradient descent algorithms. Finally, we use our proposed SAMD algorithm to train our proposed 3D aggregated residual network architecture (ARCNN). We employed the ADNI dataset to train ARCNN diagnostic models separately for the AD vs. NC task and the sMCI vs. pMCI task, followed by testing to evaluate the disease diagnostic outcomes. The results reveal that the accuracy can be improved in diagnosing AD, and the training speed can be accelerated. Our proposed method achieves 95.4% accuracy in AD diagnosis and 79.9% accuracy in MCI diagnosis; the best results contrasted with several state-of-the-art diagnosis methods. In addition, our proposed SAMD algorithm can save about 19% of the convergence time on average in the AD diagnosis model compared with the gradient descent algorithms, which is very momentous in clinic.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Humanos , Anciano , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico , Diagnóstico por Computador/métodos , Algoritmos , Progresión de la Enfermedad , Neuroimagen
4.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3014-3021, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37381959

RESUMEN

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Proteína p53 Supresora de Tumor/genética , Transducción de Señal , Hígado , Envejecimiento , Proteínas de Ciclo Celular , Interleucina-6
5.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2646-2656, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37282926

RESUMEN

This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Resistencia a la Insulina , Podocitos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Abelmoschus/química , Ratas Sprague-Dawley , Transición Epitelial-Mesenquimal , Flavonas/farmacología , Especies Reactivas de Oxígeno
6.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2657-2666, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37282927

RESUMEN

Renal tubular injury in patients with diabetic kidney disease(DKD) may be accompanied by glomerular and microvascular diseases. It plays a critical role in the progression of renal damage in DKD, and is now known as diabetic tubulopathy(DT). To explore the multi-targeted therapeutic effects and pharmacological mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese medicine for treating kidney disease, in attenuating DT, the authors randomly divided all rats into four groups: a normal control group(normal group), a DT model group(model group), a DT model+TFA-treated group(TFA group) and a DT model+rosiglitazone(ROS)-treated group(ROS group). The DT rat model was established based on the DKD rat model by means of integrated measures. After successful modeling, the rats in the four groups were continuously given double-distilled water, TFA suspension, and ROS suspension, respectively by gavage every day. After 6 weeks of treatment, all rats were sacrificed, and the samples of their urine, blood, and kidneys were collected. The effects of TFA and ROS on various indicators related to urine and blood biochemistry, renal tubular injury, renal tubular epithelial cell apoptosis and endoplasmic reticulum stress(ERS), as well as the activation of the protein kinase R-like endoplasmic reticulum kinase(PERK)-eukaryotic translation initiation factor 2α(eIF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP) signaling pathway in the kidney of the DT model rats were investigated. The results indicated that hypertrophy of renal tubular epithelial cells, renal tubular hyperplasia and occlusion, as well as interstitial extracellular matrix and collagen deposition occurred in the DT model rats. Moreover, significant changes were found in the expression degree and the protein expression level of renal tubular injury markers. In addition, there was an abnormal increase in tubular urine proteins. After TFA or ROS treatment, urine protein, the characteristics of renal tubular injury, renal tubular epithelial cell apoptosis and ERS, as well as the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney of the DT model rats were improved to varying degrees. Therein, TFA was superior to ROS in affecting the pathological changes in renal tubule/interstitium. In short, with the DT model rats, this study demonstrated that TFA could attenuate DT by multiple targets through inhibiting renal tubular ERS-induced cell apoptosis in vivo, and its effect and mechanism were related to suppressing the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney. These findings provided preliminary pharmacological evidence for the application of TFA in the clinical treatment of DT.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Flavonas/farmacología , Estrés del Retículo Endoplásmico , Nefropatías Diabéticas/tratamiento farmacológico , Apoptosis
7.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4137-4146, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37802782

RESUMEN

Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-ß1(TGF-ß1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Podocitos , Humanos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Flavonas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Fibrosis , Treonina/farmacología , Colágeno/metabolismo , Serina/farmacología , Diabetes Mellitus/tratamiento farmacológico
8.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4119-4127, 2022 Aug.
Artículo en Zh | MEDLINE | ID: mdl-36046902

RESUMEN

To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.


Asunto(s)
Necroptosis , Testículo , Envejecimiento , Animales , Medicamentos Herbarios Chinos , Masculino , Proteínas Quinasas/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/farmacología , Serina/farmacología , Transducción de Señal , Treonina/farmacología
9.
J Mater Sci Mater Med ; 32(4): 31, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33751254

RESUMEN

No effective treatment has been established for nerve dysfunction caused by spinal cord injury (SCI). Orderly axonal growth at the site of spinal cord transection and creation of an appropriate biological microenvironment are important for functional recovery. To axially guiding axonal growth, designing a collagen/silk fibroin scaffold fabricated with 3D printing technology (3D-C/SF) emulated the corticospinal tract. The normal collagen/silk fibroin scaffold with freeze-drying technology (C/SF) or 3D-C/SF scaffold were implanted into rats with completely transected SCI to evaluate its effect on nerve repair during an 8-week observation period. Electrophysiological analysis and locomotor performance showed that the 3D-C/SF implants contributed to significant improvements in the neurogolical function of rats compared to C/SF group. By magnetic resonance imaging, 3D-C/SF implants promoted a striking degree of axonal regeneration and connection between the proximal and distal SCI sites. Compared with C/SF group, rats with 3D-C/SF scaffold exhibited fewer lesions and disordered structures in histological analysis and more GAP43-positive profiles at the lesion site. The above results indicated that the corticospinal tract structure of 3D printing collagen/silk fibroin scaffold improved axonal regeneration and promoted orderly connections within the neural network, which could provided a promising and innovative approach for tissue repair after SCI.


Asunto(s)
Colágeno/química , Fibroínas/química , Impresión Tridimensional , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido/química , Animales , Axones/patología , Rastreo Diferencial de Calorimetría , Fuerza Compresiva , Electrofisiología , Femenino , Imagen por Resonancia Magnética , Movimiento , Red Nerviosa , Regeneración Nerviosa , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Difracción de Rayos X
10.
Sensors (Basel) ; 21(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833710

RESUMEN

Alzheimer's disease (AD), the most common type of dementia, is a progressive disease beginning with mild memory loss, possibly leading to loss of the ability to carry on a conversation and respond to environments. It can seriously affect a person's ability to carry out daily activities. Therefore, early diagnosis of AD is conducive to better treatment and avoiding further deterioration of the disease. Magnetic resonance imaging (MRI) has become the main tool for humans to study brain tissues. It can clearly reflect the internal structure of a brain and plays an important role in the diagnosis of Alzheimer's disease. MRI data is widely used for disease diagnosis. In this paper, based on MRI data, a method combining a 3D convolutional neural network and ensemble learning is proposed to improve the diagnosis accuracy. Then, a data denoising module is proposed to reduce boundary noise. The experimental results on ADNI dataset demonstrate that the model proposed in this paper improves the training speed of the neural network and achieves 95.2% accuracy in AD vs. NC (normal control) task and 77.8% accuracy in sMCI (stable mild cognitive impairment) vs. pMCI (progressive mild cognitive impairment) task in the diagnosis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Neuroimagen
11.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4471-4479, 2021 Sep.
Artículo en Zh | MEDLINE | ID: mdl-34581052

RESUMEN

This study explored the in vivo effects and mechanisms of the modern classical prescription Supplemented Gegen Qinlian Decoction Formula(SGDF) against diabetic kidney disease(DKD). Sixty rats were randomly divided into the normal group, model group, SGDF group, and rosiglitazone(ROS) group. The modified DKD rat model was established by employing the following three methods: exposure to high-fat diet, unilateral nephrectomy, and intraperitoneal injection of streptozotocin(STZ). After modeling, rats in the four groups were treated with double distilled water, SGDF suspension, and ROS suspension, respectively, by gavage every day. At the end of the 6 th week of drug administration, all the rats were sacrificed for collecting urine, blood, and kidney tissue, followed by the examination of rat general conditions, urine and blood biochemical indicators, glomerulosclerosis-related indicators, podocyte pyroptosis markers, insulin resistance(IR)-related indicators, and key molecules in the insulin receptor substrate(IRS) 1/phosphatidylinositol-3-kinase(PI3 K)/serine threonine kinase(Akt) signaling pathway. The results showed that SGDF and ROS improved the general conditions, some renal function indicators and glomerulosclerosis of DKD model rats without affecting the blood glucose(BG). Besides, they ameliorated the expression characteristics and levels of podocyte pyroptosis markers, alleviated IR, and up-regulated the protein expression levels of the key molecules in IRS1/PI3 K/Akt pathway to varying degrees. In conclusion, similar to ROS, SGDF relieves DKD by targeting multiple targets in vivo. Specifically, it exerts the therapeutic effects by alleviating podocyte pyroptosis and IR. This study has preliminarily provided the pharmacological evidence for the research and development of new drugs for the treatment of DKD based on SGDF.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Resistencia a la Insulina , Podocitos , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos , Piroptosis , Ratas
12.
J Cell Mol Med ; 24(7): 3931-3947, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32126150

RESUMEN

Glioblastoma (GBM) is one of the most common aggressive cancers of the central nervous system in adults with a high mortality rate. Bortezomib is a boronic acid-based potent proteasome inhibitor that has been actively studied for its anti-tumour effects through inhibition of the proteasome. The proteasome is a key component of the ubiquitin-proteasome pathway that is critical for protein homeostasis, regulation of cellular growth, and apoptosis. Overexpression of polo-like kinase 4 (PLK4) is commonly reported in tumour cells and increases their invasive and metastatic abilities. In this study, we established a cell model of PLK4 knockdown and overexpression in LN-18, A172 and LN-229 cells and found that knockdown of PLK4 expression enhanced the anti-tumour effect of bortezomib. We further found that this effect may be mediated by the PTEN/PI3K/AKT/mTOR signalling pathway and that the apoptotic and oxidative stress processes were activated, while the expression of matrix metalloproteinases (MMPs) was down-regulated. Similar phenomenon was observed using in vitro experiments. Thus, we speculate that PLK4 inhibition may be a new therapeutic strategy for GBM.


Asunto(s)
Bortezomib/farmacología , Proliferación Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/genética , Animales , Apoptosis/efectos de los fármacos , Ácidos Borónicos/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
13.
J Neurochem ; 153(2): 230-251, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31465551

RESUMEN

Traumatic brain injury (TBI) is a dominant cause of death and permanent disability worldwide. Although TBI could significantly increase the proliferation of adult neural stem cells in the hippocampus, the survival and maturation of newborn cells is markedly low. Increasing evidence suggests that the secretome derived from mesenchymal stem cells (MSCs) would be an ideal alternative to MSC transplantation. The successive and microenvironmentally responsive secretion in MSCs may be critical for the functional benefits provided by transplanted MSCs after TBI. Therefore, it is reasonable to hypothesize that the signaling molecules secreted in response to local tissue damage can further facilitate the therapeutic effect of the MSC secretome. To simulate the complex microenvironment in the injured brain well, we used traumatically injured brain tissue extracts to pretreat umbilical cord mesenchymal stem cells (UCMSCs) in vitro and stereotaxically injected the secretome from traumatic injury-preconditioned UCMSCs into the dentate gyrus of the hippocampus in a rat severe TBI model. The results revealed that compared with the normal secretome, the traumatic injury-preconditioned secretome could significantly further promote the differentiation, migration, and maturation of newborn cells in the dentate gyrus and ultimately improve cognitive function after TBI. Cytokine antibody array suggested that the increased benefits of secretome administration were attributable to the newly produced proteins and up-regulated molecules from the MSC secretome preconditioned by a traumatically injured microenvironment. Our study utilized the traumatic injury-preconditioned secretome to amplify neurogenesis and improve cognitive recovery, suggesting this method may be a novel and safer candidate for nerve repair. Cover Image for this issue: doi: 10.1111/jnc.14741.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Medios de Cultivo Condicionados/farmacología , Hipocampo/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neurogénesis/efectos de los fármacos , Animales , Cognición/efectos de los fármacos , Humanos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Cordón Umbilical
14.
Zhongguo Zhong Yao Za Zhi ; 45(1): 7-13, 2020 Jan.
Artículo en Zh | MEDLINE | ID: mdl-32237405

RESUMEN

The progression of renal damage in diabetic nephropathy(DN)is closely related to Nod-like receptor protein3(NLRP3)inflammasome activation. The characteristics of NLRP3 inflammasome activation include the changed expression and combination levels of NLRP3, apoptosis-associated speck-like protein(ASC)and pro-caspase-1, the increased expression levels of caspase-1, interleukin(IL)-1ß and IL-18 and the excessive release levels of the relative inflammatory mediators. Its molecular regulative mechanisms involve the activation of multiple signaling pathways including reactive oxygen species(ROS)/thioredoxin-interacting protein(TXNIP)pathway, nuclear factor(NF)-κB pathway, nuclear factor erythroid-related factor 2(Nrf2)pathway, long non-coding RNA(lncRNA)pathway and mitogen-activated protein kinases(MAPKs)pathway. In addition, more importantly, never in mitosis aspergillus-related kinase 7(Nek7), as a kinase regulator, could target-combine with NLRP3 at upstream to activate NLRP3 inflammasome. Some extracts of Chinese herbal medicines(CHMs)such as quercetin, curcumin, cepharanthine, piperine and salidroside, as well as Chinese herbal compound prescriptions such as Wumei Pills both could treat NLRP3 inflammasome to ameliorate inflammatory renal damage in DN. Therefore, accurately clarifying the targets of anti-inflammatory CHMs and Chinese herbal compound prescriptions delaying DN progression by targeting the molecular regulative mechanisms of NLRP3 inflammasome activation will be one of the development directions in the future.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/inmunología , Medicamentos Herbarios Chinos/uso terapéutico , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Caspasa 1/inmunología , Humanos , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Quinasas Relacionadas con NIMA
15.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5797-5803, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496121

RESUMEN

To observe the multi-targeted therapeutic effects of Huangkui Capsules(HKC)on insulin resistance(IR)and urine microalbumin in the early diabetic kidney disease(DKD)patients. The case data from the 83 DKD patients at G2 and A2 stage were collected respectively and analyzed retrospectively. According to the different treatment,all patients were divided into the control(A)group(40 cases)and the treated(B)group(43 cases). Among them,the A group patients were received "routine basic treatment";the B group patients were received "routine basic treatment+HKC". For the 2 group patients,firstly,the baseline parameters before receiving the treatment were compared respectively,and then,the changes of the total scores of traditional Chinese medicine(TCM) syndromes and the indicators of IR,urine protein,renal function,blood lipids and safety after receiving the treatment for 8 weeks were compared,respectively. Furthermore,for the all patients,the correlation analysis between IR and urine protein or IR and the total scores of TCM syndromes was carried out,respectively. The results showed that,for the B group patients received "routine basic treatment",their total scores of TCM syndromes,urine protein indicators including urine microalbumin(micro-UAlb) and urine microalbumin/urinary creatinine(UACR),IR indicators including fasting serum insulin(FIN)and homeostasis model assessment of insulin resistance(HOMA-IR)were significantly improved,respectively. For the all DKD patients,before and after the treatment,the main IR indicators(FIN and HOMA-IR)were positively correlated with urine protein indicators(micro-UAlb and UACR). The main IR indicators(FIN and HOMA-IR) were also positively correlated with the total scores of TCM syndromes. In addition,2 treatments had no significant effects on renal function,blood lipids and safety indicators in the all DKD patients. Overall, "routine basic treatment+HKC" can ameliorate IR and reduce urine microalbumin in the early DKD patients. Its therapeutic targets may be not only proteinuria,but also IR,which is the upstream risk factor of proteinuria.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Resistencia a la Insulina , Albuminuria , Cápsulas , Humanos , Insulina , Riñón , Estudios Retrospectivos
16.
Zhongguo Zhong Yao Za Zhi ; 45(24): 6003-6011, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496141

RESUMEN

Fucoidan(FPS) is an effective component of the Chinese patent medicine named Haikun Shenxi, which treats schronic renal failure in clinics, and has the potential anti-aging effects. However, it is still unclear whether FPS can improve renal aging, especially the molecular mechanism of its anti-aging. The human proximal renal tubular epithelial cells(HK-2) in vitro were divided into normal group(N), D-gal model group(D), low dose of FPS group(L-FPS), high dose of FPS group(H-FPS) and vitamin E group(VE), and treated by the different measures, respectively. More specifically, the HK-2 cells in each group were separately treated by 1 mL of 1% fetal bovine serum(FBS) or D-galactose(D-gal, 75 mmol·L~(-1)) or D-gal(75 mmol·L~(-1))+FPS(25 µg·mL~(-1)) or D-gal(75 mmol·L~(-1))+FPS(50 µg·mL~(-1)) or D-gal(75 mmol·L~(-1))+VE(50 µg·mL~(-1)). After the treatment for 24 h, firstly, the effects of D-gal on senescence-associated ß-galactosidase(SA-ß-gal) staining characteristics and klotho, P53 and P21 protein expression le-vels, as well as adenosine monophosphate activated protein kinase(AMPK)-uncoordinated 51-like kinase 1(ULK1) signaling pathway activation in the HK-2 cells were detected, respectively. Secondly, the effects of FPS and VE on SA-ß-gal staining characteristics and klotho, P53 and P21 protein expression levels in the HK-2 cells exposed to D-gal were investigated, respectively. Finally, the effects of FPS and VE on microtubule-associated protein 1 light chain 3(LC3) protein expression level and AMPK-ULK1 signaling pathway activation in the HK-2 cells exposed to D-gal were examined severally. The results indicated that, for the HK-2 cells, the dose of 75 mmol·L~(-1) D-gal could induce the changes of SA-ß-gal staining characteristics and klotho, P53 and P21 protein expression levels. That is causing cells aging. FPS and VE could both ameliorate the changes of SA-ß-gal staining characteristics and klotho, P53 and P21 protein expression levels in the HK-2 cells exposed to D-gal. That is anti-cells aging, here, the functions of FPS and VE are similar. D-gal could not only induce cell aging but also increase LC3Ⅱ, phosphorylated-AMPK(p-AMPK) and phosphorylated-ULK1(p-ULK1) protein expressions, and activate autophagy-related AMPK-ULK1 signaling pathway. FPS and VE could both improve the changes of LC3Ⅱ, p-AMPK and p-ULK1 protein expression levels in the HK-2 cells exposed to D-gal. That is inhibiting autophagy-related AMPK-ULK1 signaling pathway activation. On the whole, for the human proximal renal tubular epithelial cells aging models induced by D-gal, FPS similar to VE, can ameliorate renal cells aging by possibly inhibiting autophagy-related AMPK-ULK1 signaling pathway activation. This finding provides the preliminary pharmacologic evidences for FPS protecting against renal aging.


Asunto(s)
Autofagia , Transducción de Señal , Envejecimiento , Células Epiteliales , Humanos , Polisacáridos
17.
J Mater Sci Mater Med ; 30(11): 123, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686219

RESUMEN

Prognosis and treatment evaluation of spinal cord injury (SCI) are still in the long-term research stage. Prognostic factors for SCI treatment need effective biomarker to assess therapeutic effect. Quantitative diffusion tensor imaging (DTI) may become a potential indicators for assessing SCI repair. However, its correlation with the results of locomotor function recovery and tissue repair has not been carefully studied. The aim of this study was to use quantitative DTI to predict neurological repair of SCI with transplanting collagen/chitosan scaffold binding basic fibroblast growth factor (bFGF). To achieve our research goals, T10 complete transection SCI model was established. Then collagen/chitosan mixture adsorbed with bFGF (CCS/bFGF) were implanted into rats with SCI. At 8 weeks after modeling, implanting CCS/bFGF demonstrated more significant improvements in locomotor function according to Basso-Beattie-Bresnahan (BBB) score, inclined-grid climbing test, and electrophysiological examinations. DTI was carried out to evaluate the repair of axons by diffusion tensor tractgraphy (DTT), fractional anisotropy (FA) and apparent diffusion coefficient (ADC), a numerical measure of relative white matter from the rostral to the caudal. Parallel to locomotor function recovery, the CCS/bFGF group could significantly promote the regeneration of nerve fibers tracts according to DTT, magnetic resonance imaging (MRI), Bielschowsky's silver staining and immunofluorescence staining. Positive correlations between imaging and locomotor function or histology were found at all locations from the rostral to the caudal (P < 0.0001). These results demonstrated that DTI might be used as an effective predictor for evaluating neurological repair after SCI in experimental trails and clinical cases.


Asunto(s)
Quitosano/uso terapéutico , Colágeno/uso terapéutico , Imagen de Difusión Tensora , Factor 2 de Crecimiento de Fibroblastos/farmacología , Traumatismos de la Médula Espinal/terapia , Animales , Prótesis Vascular , Quitosano/química , Colágeno/química , Factor 2 de Crecimiento de Fibroblastos/química , Ratas
18.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4545-4551, 2019 Nov.
Artículo en Zh | MEDLINE | ID: mdl-31872646

RESUMEN

Long non-coding RNAs(lncRNAs) and microRNAs(miRNAs),as members of the non-coding RNA family,play important roles in upstream processes that regulate autophagy in mammalian cells. LncRNA and miRNA participate in various phases of the process of autophagy,including initiation,vesicle nucleation,autophagosome maturation and autophagosome fusion. Some non-coding RNAs exert bidirectional regulatory functions in the process of autophagy,include the maternally expressed gene 3(MEG3),H19 and miR-21,whereas others either inhibit autophagy(including GAS5,miR-34 a and miR-30 a) or promote autophagy(including MALAT1,miR-152 and miR-24). The regulation of autophagy by non-coding RNAs has characteristics of conditionality,diversity and complexity. In recent years,researchers at home and abroad have constantly found that some extracts from the individual Chinese herbal medicine(CHM) such as ampelopsin,salvianolic acid B and paeonol,as well as the Chinese herbal compound named Eight Ingredients Decoction,can regulate autophagy by interacting with non-coding RNA in vitro and in vivo. The latest studies have shown that plant-derived small non-coding RNAs(sncRNAs) as one of the active ingredients of CHMs can directly enter the bloodstream and internal organs to regulate gene expressions in humans. In addition,it has been reported that rhein,hyperoside and mycelium of Cordyceps sinensis all can modulate autophagy in renal tubular epithelial cell via regulating the autophagy-related signaling pathways in vivo and in vitro to reduce renal damage and aging,which is likely mediated by the miR-34 a pathway. In summary,the understanding of molecular mechanisms underlying the regulation of autophagy by non-coding RNAs(such as lncRNAs and miRNAs) is essential and required to develop new strategies for the treatments and managements of tumors,immune diseases,metabolic diseases,neurodegenerative diseases and other common diseases and decipher pharmacologic actions of CHMs.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Transducción de Señal
19.
Zhongguo Zhong Yao Za Zhi ; 44(6): 1258-1265, 2019 Mar.
Artículo en Zh | MEDLINE | ID: mdl-30989992

RESUMEN

To explore the effects and molecular mechanisms of mycelium of Cordyceps sinensis(MCs)improving renal tubular epithelial cells aging induced by D-galactose,the renal proximal tubular epithelial cells(NRK-52E cells)of rats in vitro were divided into the normal group(N),the D-gal model group(D),the low dose of MCs group(L-MCs),the medium dose of MCs group(M-MCs)and the high dose of MCs group(H-MCs),and treated by the different measures,respectively.More specifically,the NRK-52E cells in each group were separately treated by 1%fetal bovine serum(FBS)or D-galactose(D-gal,100 mmol·L~(-1))or D-gal(100 mmol·L~(-1))+MCs(20 mg·L~(-1))or D-gal(100 mmol·L~(-1))+MCs(40 mg·L~(-1))or D-gal(100 mmol·L~(-1))+MCs(80 mg·L~(-1)).After the intervention for24 h or 48 h,firstly,the effects of D-gal on the protein expression levels of klotho,P27 and P16,the staining of senescence-associatedß-galactosidase(SA-ß-gal)and the activation of adenosine monophosphate activated protein kinase(AMPK)/uncoordinated 51-like kinase 1(ULK1)signaling in the NRK-52E cells were detected,respectively.Secondly,the effects of MCs on the activation of the NRK-52E cells proliferation were investigated,respectively.Finally,the effects of MCs on the protein expression levels of klotho,P27,P16and microtubule-associated protein 1 light chain 3(LC3),the staining of SA-ß-gal and the activation of AMPK/ULK1 signaling in the NRK-52E cells exposed to D-gal were examined severally.The results indicated that,for the NRK-52E cells,D-gal could cause aging,induce the protein over-expression levels of the phosphorylated AMPK(p-AMPK)and the phosphorylated ULK1(p-ULK1)and activate AMPK/ULK1 signaling pathway.The co-treatment of MCs at the medium and high doses and D-gal could significantly ameliorate the protein expression levels of klotho,P27,P16 and the staining of SA-ß-gal,suggesting the anti-cell aging actions.In addition,the cotreatment of MCs at the medium and high doses and D-gal could obviously improve the protein expression levels of LC3,p-AMPK,and p-ULK1,inhibit the activation of AMPK/ULK1 signaling and increase autophagy.On the whole,for the renal tubular epithelial cells aging models induced by D-gal,MCs not only has the in vitro actions of anti-aging,but also intervenes aging process by inhibiting autophagy-related AMPK/ULK1 signaling activation,which may be the novel molecular mechanisms of MCs protecting against aging of the renal tubular epithelial cells.


Asunto(s)
Autofagia , Cordyceps , Animales , Células Epiteliales , Galactosa , Micelio , Ratas
20.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5457-5464, 2019 Dec.
Artículo en Zh | MEDLINE | ID: mdl-32237395

RESUMEN

The aim of this paper was to explore the effects of triptolide( TP),the effective component of Tripterygium wilfordii on improving podocyte epithelial-mesenchymal transition( EMT) induced by high glucose( HG),based on the regulative mechanisms of Nod-like receptor protein 3( NLRP 3) inflammasome in the kidney of diabetic kidney disease( DKD). The immortalized podocytes of mice in vitro were divided into the normal( N) group,the HG( HG) group,the low dose of TP( L-TP) group,the high dose of TP( HTP) group and the mannitol( MNT) group,and treated by the different measures,respectively. More specifically,the podocytes in each group were separately treated by D-glucose( DG,5 mmol·L~(-1)) or HG( 30 mmol·L~(-1)) or HG( 30 mmol·L~(-1)) + TP( 5 µg·L~(-1))or HG( 30 mmol·L~(-1)) + TP( 10 µg·L~(-1)) or DG( 5 mmol·L~(-1)) + MNT( 24. 5 mmol·L~(-1)). After the treatment of HG or TP at 24,48 and 72 h,firstly,the activation of podocyte proliferation was investigated. Secondly,the protein expression levels of the epithelial markers in podocytes such as nephrin and ZO-1,the mesenchymal markers such as collagen Ⅰ and fibronectin( FN) were detected,respectively. Finally,the protein expression levels of NLRP3 and apoptosis-associated speck-like protein( ASC) as the key signaling molecules of NLRP3 inflammasome activation,as well as the downstream effector proteins including caspase-1,interleutin( IL)-1ß and IL-18 were examined,severally. The results indicated that,for the cultured podocytes in vitro,HG could cause the low protein expression levels of nephrin and ZO-1,induce the high protein expression levels of collagen Ⅰ and FN and trigger podocyte EMT. Also HG could cause the high protein expression levels of NLRP3,ASC,caspase-1,IL-1ß and IL-18 and induce NLRP3 inflammasome activation. On the other hand,the co-treatment of TP( L-TP or H-TP) and HG for podocytes could recover the protein expression levels of nephrin and ZO-1,inhibit the protein expression levels of collagen Ⅰ and FN and ameliorate podocyte EMT. Also the co-treatment of TP( L-TP or H-TP) and HG could down-regulate the protein expression levels of NLRP3 and ASC,inhibit NLRP3 inflammasome activation and reduce the protein expression levels of the downstream effector molecules including caspase-1,IL-1ß and IL-18. On the whole,HG could activate NLRP3 inflammasome and induce podocyte EMT in vitro. TP at the appropriate dose range could inhibit NLRP3 inflammasome activation and ameliorate podocyte EMT,which may be one of the critical molecular mechanisms of TP protecting againstpodocyte inflammatory injury in DKD.


Asunto(s)
Diterpenos/farmacología , Transición Epitelial-Mesenquimal , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fenantrenos/farmacología , Podocitos/efectos de los fármacos , Animales , Caspasa 1/metabolismo , Células Cultivadas , Nefropatías Diabéticas , Compuestos Epoxi/farmacología , Glucosa , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones , Podocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA