Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Amino Acids ; 56(1): 23, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506925

RESUMEN

Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Humanos , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Aminoácidos/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico
2.
J Biochem Mol Toxicol ; 38(3): e23661, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369721

RESUMEN

Phenothiazines (PTZs) are an emerging group of molecules showing effectiveness toward redox signaling and reduction of oxidative injury to cells, via the activation on Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Nrf2). Although several electrophilic and indirect Nrf2 activators have been reported, the risk of "off-target" effect due to the complexity of their molecular mechanisms of action, has aroused research interest toward non-electrophilic and direct modulators of Nrf2 pathway, such as PTZs. This review represents the first overview on the roles of PTZs as non-electrophilic Nrf2 activator and free radical scavengers, as well as on their potential therapeutic effects in oxidative stress-mediated diseases. Here, we provide a collective and comprehensive information on the PTZs ability to scavenge free radicals and activate the Nrf2 signaling pathway, with the aim to broaden the knowledge of their therapeutic potentials and to stimulate innovative research ideas.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Fenotiazinas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depuradores de Radicales Libres , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal , Fenotiazinas/farmacología
3.
Arch Pharm (Weinheim) ; 357(3): e2300491, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158335

RESUMEN

Recently, the azepino[4,3-b]indole-1-one derivative 1 showed in vitro nanomolar inhibition against butyrylcholinesterase (BChE), the ChE isoform that plays a role in the progression and pathophysiology of Alzheimer's disease (AD), and protects against N-methyl- d-aspartate-induced neuronal toxicity. Three 9-R-substituted (R = F, Br, OMe) congeners were investigated. The 9-F derivative (2a) was found more potent as BChE inhibitors (half-maximal inhibitory concentration value = 21 nM) than 2b (9-Br) and 2c (9-OMe), achieving a residence time (38 s), assessed by surface plasmon resonance, threefold higher than that of 1. To progress in featuring the in vivo pharmacological characterization of 2a, herein the 18 F-labeled congener 2a was synthesized, by applying the aromatic 18 F-fluorination method, and its whole-body distribution in healthy mice, including brain penetration, was evaluated through positron emission tomography imaging. [18 F]2a exhibited a rapid and high brain uptake (3.35 ± 0.26% ID g-1 at 0.95 ± 0.15 min after injection), followed by a rapid clearance (t1/2 = 6.50 ± 0.93 min), showing good blood-brain barrier crossing. After a transient liver accumulation of [18 F]2a, the intestinal and urinary excretion was quantified. Finally, ex vivo pharmacological experiments in mice showed that the unlabeled 2a affects the transmitters' neurochemistry, which might be favorable to reverse cognition impairment in mild-to-moderate AD-related dementias.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa , Relación Estructura-Actividad , Transporte Biológico , Indoles
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835033

RESUMEN

3-3'-Diindolylmethane (DIM) is a biologically active dimer derived from the endogenous conversion of indole-3-carbinol (I3C), a naturally occurring glucosinolate found in many cruciferous vegetables (i.e., Brassicaceae). DIM was the first pure androgen receptor antagonist isolated from the Brassicaceae family and has been recently investigated for its potential pharmacological use in prostate cancer prevention and treatment. Interestingly, there is evidence that DIM can also interact with cannabinoid receptors. In this context, by considering the well-known involvement of the endocannabinoid system in prostate cancer, we have pharmacologically characterized the properties of DIM on both CB1 and CB2 cannabinoid receptors in two human prostate cancer cell lines: PC3 (androgen-independent/androgen receptor negative) and LNCaP (androgen-dependent). In the PC3 cell line, DIM was able to activate CB2 receptors and potentially associated apoptotic pathways. On the other hand, although DIM was also able to activate CB2 receptors in the LNCaP cell line, no apoptotic effects were observed. Our evidence confirms that DIM is a CB2 receptor ligand and, moreover, it has a potential anti-proliferative effect on androgen-independent/androgen receptor-negative prostate cancer cells.


Asunto(s)
Brassicaceae , Neoplasias de la Próstata , Receptor Cannabinoide CB2 , Humanos , Masculino , Andrógenos/metabolismo , Brassicaceae/química , Línea Celular , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/química
5.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674826

RESUMEN

In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.


Asunto(s)
Cannabinoides , Neuroblastoma , Humanos , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Calcio/metabolismo , Cannabinoides/farmacología , Cannabinoides/metabolismo , Señalización del Calcio
6.
Molecules ; 28(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36985723

RESUMEN

Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities. NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural-activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Estrés Oxidativo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
7.
Eur J Clin Invest ; 52(10): e13820, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35638352

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative movement disorder. PD affects 2% of the population above 65 years old; however, with the growing number of senior citizens, PD prevalence is predicted to increase in the following years. Pathologically, PD is characterized by dopaminergic cell neurodegeneration in the substantia nigra, resulting in decreased dopamine levels in the nigrostriatal pathway, triggering motor symptoms. Although the pathological mechanisms leading to PD are still unclear, large evidence indicates that oxidative stress plays an important role, not only because it increases with age which is the most significant risk factor for PD development, but also as a result of alterations in several processes, particularly mitochondria dysfunction. The modulation of oxidative stress, especially using dietary mitochondriotropic antioxidants, represents a promising approach to prevent or treat PD. Although most mitochondria-targeted antioxidants with beneficial effects in PD-associated models have failed to show any therapeutic benefit in clinical trials, several questions remain to be clarified. Hereby, we review the role played by oxidative stress in PD pathogenesis, emphasizing mitochondria as reactive oxygen species (ROS) producers and as targets for oxidative stress-related dysfunctional mechanisms. In addition, we also describe the importance of using dietary-based mitochondria-targeted antioxidants as a valuable strategy to counteract the deleterious effects of ROS in pre-clinical and/or clinical trials of PD, pointing out their significance to slow, and possibly halt, the progression of PD.


Asunto(s)
Enfermedad de Parkinson , Anciano , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
8.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499596

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.


Asunto(s)
Enfermedad de Huntington , Factor 2 Relacionado con NF-E2 , Enfermedades Neurodegenerativas , Humanos , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo
9.
Molecules ; 26(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361850

RESUMEN

Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Triterpenos Pentacíclicos , Raíces de Plantas/química , Tripterygium/química , Animales , Encefalopatías/metabolismo , Encefalopatías/patología , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/uso terapéutico
10.
Brain Behav Immun ; 87: 444-454, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31987923

RESUMEN

Depression is one of the most common psychiatric diseases and the prevalence of depressive symptoms in women is almost twice compared to men, although the reasons of this gender difference are not fully understood yet. Recently, soluble amyloid beta (Aß)1-42 peptide has been receiving great importance in the development of depression, also considering that depression is highly comorbid with Alzheimer's disease and other neurodegenerative illnesses. The central role played by Aß in the development of depressive-like symptoms in rodents has been evidenced in environmental rodent model of depression. Indeed, we have previously found that lifelong exposure to n-3 polyunsaturated fatty acids (PUFA) deficient diet in female rats at 8 weeks of life leads to depressive like- symptoms and higher susceptibility to stress associated with increased Aß levels. In order to understand if such effects were maintained over time, rats were exposed to the same diet regimen until 6 or 21 weeks of life. We found that both timepoints of exposure to n-3 PUFA deficient diet lead to depressive-like phenotype. Furthermore, a significant alteration in brain neurochemistry was retrieved. In particular, in hippocampal area a significant reduction in serotonin (5-HT) and noradrenaline (NA) content was evidenced. Considering the prominent role of NA in counterbalancing neuroinflammatory state, we quantified in the same brain area kynurenine levels, a metabolite of tryptophan implicated in inflammatory state and brought to the fore for its implication in depression. Interestingly, kynurenine levels were significantly increased in hippocampus (HIPP) of female rats exposed to such diet. In addition, lifelong deficiency in n-3 PUFA dietary intake led to systemic increase of corticosterone, hence hypothalamic pituitary adrenal (HPA) axis hyperactivation, and higher proinflammatory cytokine production. Increased production of kynurenine, along with HPA axis hyperactivation, have been associated with immune system modulation, particularly through Toll-like receptor type 2 (TLR2) and Toll-like receptor type 4 (TLR4) involvement. In addition, it has been shown that soluble forms of Aß1-42 can induced depressive like-phenotype in consequence to a crosstalk between TLR4 and 5-HTergic system. Thus, considering that in this model we have previously reported increased plasma Aß1-42 level, we quantified TRL2 and 4 expression in HIPP of treated rats. We found that chronic exposure to a diet characterized by very low n-3 PUFA content led to higher expression of TLR2 and TLR4 in HIPP of female treated rats, indicating an activation of the immune system and was accompanied by increased expression of oligomeric Aß. Taken together, our data indicate that the pro-depressive effects induced by a diet poor in n-3 PUFA can be attributable to a shift of hippocampal tryptophan metabolism toward inflammatory metabolite ultimately corresponding to altered immune response and increased Aß oligomerization.


Asunto(s)
Péptidos beta-Amiloides , Ácidos Grasos Omega-3 , Animales , Depresión , Femenino , Sistema Hipotálamo-Hipofisario , Quinurenina , Fenotipo , Sistema Hipófiso-Suprarrenal , Ratas , Receptores Toll-Like
11.
Molecules ; 24(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694174

RESUMEN

Administration of subanesthetic doses of ketamine during brain maturation represents a tool to mimic an early insult to the central nervous system (CNS). The cerebellum is a key player in psychosis pathogenesis, to which oxidative stress also contributes. Here, we investigated the impact of early celastrol administration on behavioral dysfunctions in adult mice that had received ketamine (30 mg/kg i.p.) at postnatal days (PNDs) 7, 9, and 11. Cerebellar levels of 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase (NOX) 1 and NOX2, as well as of the calcium-binding protein parvalbumin (PV), were also assessed. Furthermore, celastrol effects on ketamine-induced alterations of proinflammatory (TNF-α, IL-6 and IL-1ß) and anti-inflammatory (IL-10) cytokines in this brain region were evaluated. Early celastrol administration prevented ketamine-induced discrimination index decrease at adulthood. The same was found for locomotor activity elevations and increased close following and allogrooming, whereas no beneficial effects on sniffing impairment were detected. Ketamine increased 8-OHdG in the cerebellum of adult mice, which was also prevented by early celastrol injection. Cerebellar NOX1 levels were enhanced at adulthood following postnatal ketamine exposure. Celastrol per se induced NOX1 decrease in the cerebellum. This effect was more significant in animals that were early administered with ketamine. NOX2 levels did not change. Ketamine administration did not affect PV amount in the cerebellum. TNF-α levels were enhanced in ketamine-treated animals; however, this was not prevented by early celastrol administration. While no changes were observed for IL-6 and IL-1ß levels, ketamine determined a reduction of cerebellar IL-10 expression, which was prevented by early celastrol treatment. Our results suggest that NOX inhibition during brain maturation prevents the development of psychotic-like behavioral dysfunctions, as well as the increased cerebellar oxidative stress and the reduction of IL-10 in the same brain region following ketamine exposure in postnatal life. This opens novel neuroprotective opportunities against early detrimental insults occurring during brain development.


Asunto(s)
Cerebelo/efectos de los fármacos , Interleucina-10/metabolismo , Ketamina/farmacología , Estrés Oxidativo/efectos de los fármacos , Trastornos Psicóticos/tratamiento farmacológico , Triterpenos/farmacología , Animales , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/metabolismo , NADPH Oxidasas/metabolismo , Parvalbúminas/metabolismo , Triterpenos Pentacíclicos , Trastornos Psicóticos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Molecules ; 21(10)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27689989

RESUMEN

Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38242425

RESUMEN

Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.


Asunto(s)
Ácido Glutámico , Serotonina , Femenino , Masculino , Embarazo , Animales , Ratas , Ácido Hidroxiindolacético , Especies Reactivas de Oxígeno , Superóxido Dismutasa-1 , FN-kappa B , Norepinefrina , Oxidación-Reducción , Ácido gamma-Aminobutírico
14.
Transl Psychiatry ; 14(1): 193, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632257

RESUMEN

Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Humanos , Trastorno Autístico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Acetilcolina , Dopamina , Factor de Crecimiento Nervioso/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Transmisión Sináptica/fisiología , Trastorno del Espectro Autista/metabolismo , Amígdala del Cerebelo/metabolismo , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad
15.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399446

RESUMEN

Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.

16.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539877

RESUMEN

In recent years, research on the discovery of natural compounds with potent antioxidant properties has resulted in growing interest in these compounds due to their potential therapeutic applications in oxidative-stress-related diseases. Argan oil, derived from the kernels of a native tree from Morocco, Argania spinosa, is renowned for its rich composition of bioactive compounds, prominently tocopherols, polyphenols, and fatty acids. Interestingly, a large body of data has shown that several components of argan oil activate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, playing a crucial role in the cellular defense against oxidative stress. Activation of this Nrf2 pathway by argan oil components leads to the increased expression of downstream target proteins like NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutase (SOD), heme oxygenase 1 (HO-1), and catalase (CAT). Such Nrf2 activation accounts for several health benefits related to antioxidant defense, anti-inflammatory effects, cardiovascular health, and neuroprotection in organisms. Furthermore, the synergistic action of the bioactive compounds in argan oil enhances the Nrf2 pathway. Accordingly, the modulation of the Kelch-like ECH associated protein 1 (Keap1)/Nrf2 signaling pathway by these components highlights the potential of argan oil in protecting cells from oxidative stress and underlines its relevance in dietetic prevention and therapeutic applications. This review aims to provide an overview of how major compounds in argan oil activate the Nrf2 pathway, updating our knowledge on their mechanisms of action and associated health benefits.

17.
Molecules ; 18(6): 6161-72, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23708230

RESUMEN

Oregano and thyme essential oils are used for therapeutic, aromatic and gastronomic purposes due to their richness in active substances, like carvacrol; however, the effects of the latter on the central nervous system have been poorly investigated. The aim of our study was to define the effects of carvacrol on brain neurochemistry and behavioural outcome in rats. Biogenic amine content in the prefrontal cortex and hippocampus after chronic or acute oral carvacrol administration was measured. Animals were assessed by a forced swimming test. Carvacrol, administered for seven consecutive days (12.5 mg/kg p.o.), was able to increase dopamine and serotonin levels in the prefrontal cortex and hippocampus. When single doses were used (150 and 450 mg/kg p.o.), dopamine content was increased in the prefrontal cortex at both dose levels. On the contrary, a significant dopamine reduction in hippocampus of animals treated with 450 mg/kg of carvacrol was found. Acute carvacrol administration only significantly reduced serotonin content in either the prefrontal cortex or in the hippocampus at the highest dose. Moreover, acute carvacrol was ineffective in producing changes in the forced swimming test. Our data suggest that carvacrol is a brain-active molecule that clearly influences neuronal activity through modulation of neurotransmitters. If regularly ingested in low concentrations, it might determine feelings of well-being and could possibly have positive reinforcer effects.


Asunto(s)
Aromatizantes/farmacología , Monoterpenos/farmacología , Neurotransmisores/farmacología , Animales , Conducta Animal/efectos de los fármacos , Monoaminas Biogénicas/metabolismo , Cimenos , Dopamina/metabolismo , Aromatizantes/administración & dosificación , Masculino , Monoterpenos/administración & dosificación , Actividad Motora/efectos de los fármacos , Neurotransmisores/administración & dosificación , Ratas , Serotonina/metabolismo
18.
Front Pharmacol ; 14: 1264842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745068

RESUMEN

Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.

19.
Biomed Pharmacother ; 158: 114181, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592494

RESUMEN

Subjects suffering from psychosis frequently experience anxiety. However, mechanisms underlying this comorbidity remain still unclear. We investigated whether neurochemical and neuroendocrine dysfunctions were involved in the development of anxiety-like behavior in a rodent model of psychotic-like symptoms, obtained by exposing male rats to social isolation rearing from postnatal day 21 to postnatal day 70. In the elevated zero maze test, isolated rats showed a significant reduction in the time spent in the open arms, as well as an increase in the time spent in the closed arms, compared to controls. An increased grooming time in the open field test was also observed in isolated animals. Isolation-induced anxiety-like behavior was accompanied by a decrease of plasmatic oxytocin, prolactin, ghrelin and melatonin levels, whereas plasmatic amount of Neuropeptide S was not altered. Social isolation also caused a reduction of noradrenaline, serotonin and GABA levels, together with an increase of serotonin turnover and glutamate levels in the amygdala of isolated animals. No significant differences were found in noradrenaline and serotonin levels, as well as in serotonin turnover in hippocampus, while glutamate amount was increased and GABA levels were reduced in isolated rats. Furthermore, there was a reduction in plasmatic serotonin content, and an increase in plasmatic kynurenine levels following social isolation, while no significant changes in serotonin turnover were observed. Taken together, our data provide novel insights in the neurobiological alterations underlying the comorbidity between psychosis and anxiety, and open new perspectives for multi-target therapies acting on both neurochemical and neuroendocrine pathways. DATA AVAILABILITY STATEMENT: The data presented in this study are available on request from the corresponding author.


Asunto(s)
Ansiedad , Serotonina , Ratas , Animales , Masculino , Serotonina/metabolismo , Ansiedad/metabolismo , Aislamiento Social , Norepinefrina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Conducta Animal
20.
Pharmacol Res ; 65(1): 100-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21875667

RESUMEN

The cloning of the opioid-receptor-like receptor (ORL-1) and the identification of the orphaninFQ/nociceptin (OFQ/N) as its endogenous agonist has revealed a new G-protein-coupled receptor signalling system. The structural and functional homology of ORL-1 to the opioid receptor systems has posed a number of challenges in the understanding the often competing physiological responses elicited by these G-protein-coupled receptors. We had previously shown that in guinea pig ileum (GPI), the acute µ-withdrawal response is under the inhibitory control of several systems. Specifically, we found that the exposure to a µ-opioid receptor agonist activates indirectly the κ-opioid, the A(1)-adenosine and the cannabinoid CB(1) systems, that in turn inhibit the withdrawal response. The indirect activation of these systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the ORL-1 system is also involved in the regulation of the acute µ-withdrawal response. Interestingly, we found that in GPI preparation, the ORL-1 system is not indirectly activated by the µ-opioid receptor stimulation, but instead the system is able by itself to directly regulate the acute µ-withdrawal response. Moreover, we have demonstrated that the ORL-1 system behaves both as anti-opioid or opioid-like system based on the level of activation. The same behaviour has also been observed in presence of CCk-8. Furthermore, in GPI, the existence of an endogenous tone of the ORL-1 system has been demonstrated. We concluded that the ORL-1 system acts as a neuromodulatory system, whose action is strictly related to the modulation of excitatory neurotrasmitters released in GPI enteric nervous system.


Asunto(s)
Analgésicos Opioides/farmacología , Íleon/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Péptidos Opioides/farmacología , Receptores Opioides mu/agonistas , Receptores Opioides/efectos de los fármacos , Sincalida/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Cobayas , Íleon/metabolismo , Técnicas In Vitro , Masculino , Músculo Liso/metabolismo , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología , Receptor de Nociceptina , Nociceptina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA