Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38109256

RESUMEN

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

2.
J Phys Chem A ; 128(4): 716-726, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236195

RESUMEN

Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.

3.
Angew Chem Int Ed Engl ; : e202416291, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39389916

RESUMEN

Dielectric capacitors harvest energy through an electrostatic process, which enables an ultrafast charging-discharging rate and ultrahigh power density. However, achieving high energy density (Wrec) and efficiency (η) simultaneously, especially when preserving them across a wide frequency/temperature range or cycling numbers, remains challenging. In this work, by especially introducing NaTaO3 into the representative ferroelectric relaxor of Bi0.5K0.5TiO3-Bi0.5Na0.5TiO3 and leveraging the mismatch between B-site atoms, we proposed a method of enhancing local structural fluctuation to refine the polar configuration and to effectively improve its overall energy-storage performances. As a consequence, the ceramic exhibits an ultrahigh Wrec of 15.0 J/cm3 and high η up to 80%, along with a very wide frequency stability of 10 - 200 Hz and extensive cycling number up to 108. In-depth local structure and chemical environment investigations, consisting of atom-scale electron microscopy, neutron total scattering, and solid-state nuclear magnetic resonance, reveal that the randomly distributed A/B-site atom pairs emerge in the system, leading to the evident local structural fluctuations and concomitant polymorphic polar nanodomains. These key ingredients contribute to the large polarization, minimal hysteresis, and high breakdown strength, thereby promoting energy-storage performances. This work opens a new path for designing high-performance dielectric capacitors via manipulating local structural fluctuations.

4.
J Chem Phys ; 156(3): 034503, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35065559

RESUMEN

How is the orientation of molecular liquids ordered on cooling? What are the basic structures of molecular glasses, e.g., close to the crystalline structure or some special structures such as icosahedral cluster? These are long-standing questions in liquid and glass physics. We have constructed a novel cryostat to prepare simple molecular glasses by vapor deposition and performed in situ synchrotron radiation x-ray diffraction experiments. The glassy state of a simple molecule CS2, which cannot be vitrified by normal liquid quenching, was successfully prepared with this instrument, and its diffraction data were collected in a wide Q-range of 0.16-25.7 Å-1 with a high-energy diffractometer at BL04B2, SPring-8. The diffraction data of liquid CS2 were also recorded in a wide temperature range of 160-300 K. These diffraction data were analyzed with molecular dynamics simulations and reverse Monte Carlo modelings to investigate orientational correlation. From the obtained 3D structure models, the orientational correlation between neighboring CS2 molecules was investigated quantitatively as a function of temperature. At room temperature, the parallel and T-shaped arrangements are preferred for the nearest neighbor correlation. On cooling, these arrangements are developed gradually, and its rate became prominent below the melting temperature (162 K). In the glassy state, the slipped-parallel arrangement is dominant as well as the T-shaped arrangement. Both arrangements appear in the CS2 crystal, indicating that the structure of glassy CS2 is close to that of crystalline CS2.

5.
J Am Chem Soc ; 141(15): 6310-6317, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30932492

RESUMEN

The negative thermal expansion (NTE) in CuO is explained via electron-transfer-driven superexchange interaction. The elusive connection between the spin-lattice coupling and NTE of CuO is investigated by neutron scattering and principal strain axes analysis. The density functional theory calculations show as the temperature decreases, the continuously increasing electron transfer accounts for enhancing the superexchange interaction along [101̅], the principal NTE direction. It is further rationalized that only when the interaction along [101̅] is preferably enhanced to a certain level compared to the other competing antiferromagnetic exchange pathways can the corresponding NTE occur. Outcomes from this work have implications for controlling the thermal expansion through superexchange interaction, via, for example, optical manipulation, electron or hole doping, etc.

6.
Opt Express ; 27(11): 16121-16142, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163798

RESUMEN

The Diamond Light Source (DLS) beamline I15-1 measures atomic pair distribution functions (PDF) using scattering of 40-80 keV X-rays. A unique focusing element was needed to condense these X-rays from an initial large cross section (11.0 mm H × 4.2 mm V) into a required spot size of FWHM ≈680 µm (H) × 20 µm (V) at a variable position between the sample and the detector. The large numerical aperture is achieved by coating a silicon substrate over 1 m long with three multilayer stripes of Bragg angle 4.2 mrad. One stripe selects X-rays of each energy 40.0, 65.4, and 76.6 keV. Sixteen piezoelectric bimorph actuators attached to the sides of the mirror substrate adjusted the reflecting surface's shape. Focal spots of vertical width < 15 µm were obtained at three positions over a 0.92 m range, with fast, easy switching from one focal position to another. Minimized root mean square slope errors were close to 0.5 µrad after subtraction of a uniform curvature. Reflectivity curves taken along each stripe showed consistent high peaks with generally small angular variation of peak positions. This is the first application of a 1 m long multilayer-coated bimorph mirror at a synchrotron beamline. Data collected with its help on a slice of a lithium ion battery's cathode are presented.

7.
Inorg Chem ; 58(14): 9016-9027, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31241907

RESUMEN

Here we report a high-pressure investigation into the structural and magnetic properties of the double perovskite La2NiMnO6 using neutron scattering over a temperature range of 4.2-300 K at ambient pressure and over a temperature range of 120-1177 K up to a maximum pressure of 6.6 GPa. X-ray diffraction was also used up to a maximum pressure of 64 GPa, over a temperature range of 300-720 K. The sample was found to exist in a mixed rhombohedral/monoclinic symmetry at ambient conditions, the balance of which was found to be strongly temperature- and pressure-dependent. Alternating current magnetometry and X-ray absorption near-edge structure measurements were made at ambient pressure to characterize the sample, suggesting that the transition-metal sites exist in a mixed Ni3+/Mn3+ and Ni2+/Mn4+ state at ambient temperature and pressure. Analysis of the magnetic properties of the sample shows that the Curie temperature can be enhanced by ∼12 K with 2 GPa applied pressure, but it is highly stable at pressures beyond this. We report a pressure-volume-temperature equation of state for this material over this combined temperature and pressure range, with an ambient temperature bulk modulus of ∼179(8) GPa. The previously reported transition from monoclinic to rhombohedral symmetry upon heating to 700 K is seen to be encouraged with applied pressure, transforming fully by ∼1.5 GPa. Raman spectroscopy data were collected up to ∼8 GPa and show no clear changes or discontinuities over the reported phase transition to rhombohedral symmetry or any indication of further changes over the range considered. The ambient-pressure Grüneisen parameter γth was determined to be γth = 2.6 with a Debye temperature of 677 K. The individual modal parameters γj at ambient temperature were also determined from the high-pressure Raman data.

8.
Philos Trans A Math Phys Eng Sci ; 377(2149): 20180227, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31130096

RESUMEN

The hybrid perovskites are coordination frameworks with the same topology as the inorganic perovskites, but with properties driven by different chemistry, including host-framework hydrogen bonding. Like the inorganic perovskites, these materials exhibit many different phases, including structures with potentially exploitable functionality. However, their phase transformations under pressure are more complex and less well understood. We have studied the structures of manganese and cobalt guanidinium formate under pressure using single-crystal X-ray and powder neutron diffraction. Under pressure, these materials transform to a rhombohedral phase isostructural to cadmium guanidinium formate. This transformation accommodates the reduced cell volume while preserving the perovskite topology of the framework. Using density-functional theory calculations, we show that this behaviour is a consequence of the hydrogen-bonded network of guanidinium ions, which act as struts protecting the metal formate framework against compression within their plane. Our results demonstrate more generally that identifying suitable host-guest hydrogen-bonding geometries may provide a route to engineering hybrid perovskite phases with desirable crystal structures. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.

9.
Phys Rev Lett ; 118(6): 067201, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234510

RESUMEN

The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y_{2}Mo_{2}O_{7}-in which magnetic Mo^{4+} ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-ray-absorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo^{4+} ions displace according to a local "two-in-two-out" rule on each Mo_{4} tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo^{4+} ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O^{2-} displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.

10.
Chemphyschem ; 18(5): 459-464, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28000340

RESUMEN

The molecular crystals adamantane, C10 H16 , and adamantanecarboxylic acid, C10 H15 COOH, undergo order-disorder phase transitions at 208 and 250 K, respectively. Reverse Monte Carlo refinement of total neutron scattering data collected from deuterated samples immediately above these phase transitions shows that the high-temperature phases are well described by models in which the adamantyl groups are disordered over two sites. No correlation between the orientations of neighbouring molecules is observed. These results demonstrate that the intermolecular potential energy of these materials depends strongly on the orientation of the reference molecule but only very weakly on the orientations of its neighbours.

11.
Inorg Chem ; 56(1): 594-607, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27977159

RESUMEN

The structure of the mineral schafarzikite, FeSb2O4, has one-dimensional channels with walls comprising Sb3+ cations; the channels are separated by edge-linked FeO6 octahedra that form infinite chains parallel to the channels. Although this structure provides interest with respect to the magnetic and electrical properties associated with the chains and the possibility of chemistry that could occur within the channels, materials in this structural class have received very little attention. Here we show, for the first time, that heating selected phases in oxygen-rich atmospheres can result in relatively large oxygen uptakes (up to ∼2% by mass) at low temperatures (ca. 350 °C) while retaining the parent structure. Using a variety of structural and spectroscopic techniques, it is shown that oxygen is inserted into the channels to provide a structure with the potential to show high one-dimensional oxide ion conductivity. This is the first report of oxygen-excess phases derived from this structure. The oxygen insertion is accompanied not only by oxidation of Fe2+ to Fe3+ within the octahedral chains but also Sb3+ to Sb5+ in the channel walls. The formation of a defect cluster comprising one 5-coordinate Sb5+ ion (which is very rare in an oxide environment), two interstitial O2- ions, and two 4-coordinate Sb3+ ions is suggested and is consistent with all experimental observations. To the best of our knowledge, this is the first example of an oxidation process where the local energetics of the product dictate that simultaneous oxidation of two different cations must occur. This reaction, together with a wide range of cation substitutions that are possible on the transition metal sites, presents opportunities to explore the schafarzikite structure more extensively for a range of catalytic and electrocatalytic applications.

12.
J Am Chem Soc ; 138(4): 1273-9, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26771687

RESUMEN

CeNbO4.25 is reported to exhibit fast oxygen ion diffusion at moderate temperatures, making this the prototype of a new class of ion conductor with applications in a range of energy generation and storage devices. To date, the mechanism by which this ion transport is achieved has remained obscure, in part due to the long-range commensurately modulated structural motif. Here we show that CeNbO4.25 forms with a unit cell ∼12 times larger than the stoichiometric tetragonal parent phase of CeNbO4 as a result of the helical ordering of Ce(3+) and Ce(4+) ions along z. Interstitial oxygen ion incorporation leads to a cooperative displacement of the surrounding oxygen species, creating interlayer "NbO6" connectivity by extending the oxygen coordination number to 7 and 8. Molecular dynamic simulations suggest that fast ion migration occurs predominantly within the xz plane. It is concluded that the oxide ion diffuses anisotropically, with the major migration mechanism being intralayer; however, when obstructed, oxygen can readily move to an adjacent layer along y via alternate lower energy barrier pathways.

13.
Chemphyschem ; 17(21): 3494-3503, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27569997

RESUMEN

The structure of several nano-sized ceria, CeO2 , systems was investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce4+ and O2- are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano-sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributable to the particle size of the CeO2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L3 - and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size.

14.
Faraday Discuss ; 192: 217-240, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27472014

RESUMEN

Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

15.
Inorg Chem ; 54(4): 1563-71, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25584771

RESUMEN

The quaternary transition metal oxyselenide Ce2O2ZnSe2 has been shown to adopt a ZrCuSiAs-related structure with Zn(2+) cations in a new ordered arrangement within [ZnSe2](2-) layers. The color of the compound changes as a function of cell volume, which can vary by ∼0.4% under different synthetic conditions. At the highest, intermediate, and lowest cell volumes, the color is yellow-ochre, brown, and black, respectively. The decreased volume is attributed to oxidation of Ce from 3+ to 4+, the extent of which can be controlled by synthetic conditions. Ce2O2ZnSe2 is a semiconductor at all cell volumes with experimental optical band gaps of 2.2, 1.4, and 1.3 eV for high, intermediate, and low cell volume samples, respectively. SQUID measurements show Ce2O2ZnSe2 to be paramagnetic from 2 to 300 K with a negative Weiss temperature of θ = -10 K, suggesting weak antiferromagnetic interactions.

16.
Inorg Chem ; 54(15): 7230-8, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25924673

RESUMEN

A number of Ln2O2MSe2 (Ln = La and Ce; M = Fe, Zn, Mn, and Cd) compounds, built from alternating layers of fluorite-like [Ln2O2](2+) sheets and antifluorite-like [MSe2](2-) sheets, have recently been reported in the literatures. The available MSe4/2 tetrahedral sites are half-occupied, and different compositions display different ordering patterns: [MSe2](2-) layers contain MSe4/2 tetrahedra that are exclusively edge-sharing (stripe-like), exclusively corner-sharing (checkerboard-like), or mixtures of both. This paper reports 60 new compositions in this family. We reveal that the transition-metal arrangement can be systematically controlled by either Ln or M doping, leading to an "infinitely adaptive" structural family. We show how this is achieved in La2O2Fe1-xZnxSe2, La2O2Zn1-xMnxSe2, La2O2Mn1-xCdxSe2, Ce2O2Fe1-xZnxSe2, Ce2O2Zn1-xMnxSe2, Ce2O2Mn1-xCdxSe2, La2-yCeyO2FeSe2, La2-yCeyO2ZnSe2, La2-yCeyO2MnSe2, and La2-yCeyO2CdSe2 solid solutions.

17.
Phys Rev Lett ; 113(13): 135501, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302900

RESUMEN

A combination of in situ high-pressure neutron diffraction at pressures up to 17.5(5) GPa and molecular dynamics simulations employing a many-body interatomic potential model is used to investigate the structure of cold-compressed silica glass. The simulations give a good account of the neutron diffraction results and of existing x-ray diffraction results at pressures up to ~60 GPa. On the basis of the molecular dynamics results, an atomistic model for densification is proposed in which rings are "zipped" by a pairing of five- and/or sixfold coordinated Si sites. The model gives an accurate description for the dependence of the mean primitive ring size ⟨n⟩ on the mean Si-O coordination number, thereby linking a parameter that is sensitive to ordering on multiple length scales to a readily measurable parameter that describes the local coordination environment.

18.
J Appl Crystallogr ; 57(Pt 4): 1251-1262, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108806

RESUMEN

This work introduces a completely rewritten version of the program RMCProfile (version 7), big-box, reverse Monte Carlo modelling software for analysis of total scattering data. The major new feature of RMCProfile7 is the ability to refine multiple phases simultaneously, which is relevant for many current research areas such as energy materials, catalysis and engineering. Other new features include improved support for molecular potentials and rigid-body refinements, as well as multiple different data sets. An empirical resolution correction and calculation of the pair distribution function as a back-Fourier transform are now also available. RMCProfile7 is freely available for download at https://rmcprofile.ornl.gov/.

19.
J Am Chem Soc ; 135(34): 12849-56, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23895493

RESUMEN

We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 < x < 1), whose isotropic thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material.

20.
J Am Chem Soc ; 135(20): 7610-20, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23607590

RESUMEN

Using a combination of single-crystal and powder X-ray diffraction measurements, we study temperature- and pressure-driven structural distortions in zinc(II) cyanide (Zn(CN)2) and cadmium(II) imidazolate (Cd(im)2), two molecular frameworks with the anticuprite topology. Under a hydrostatic pressure of 1.52 GPa, Zn(CN)2 undergoes a first-order displacive phase transition to an orthorhombic phase, with the corresponding atomic displacements characterized by correlated collective tilts of pairs of Zn-centered tetrahedra. This displacement pattern sheds light on the mechanism of negative thermal expansion in ambient-pressure Zn(CN)2. We find that the fundamental mechanical response exhibited by Zn(CN)2 is mirrored in the temperature-dependent behavior of Cd(im)2. Our results suggest that the thermodynamics of molecular frameworks may be governed by considerations of packing efficiency while also depending on dynamic instabilities of the underlying framework topology.


Asunto(s)
Cadmio/química , Cianuros/química , Imidazoles/química , Compuestos Organometálicos/química , Zinc/química , Modelos Moleculares , Difracción de Polvo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA