Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 52(3): 456-65, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23282139

RESUMEN

FixL is a prototype for heme-based sensors, multidomain proteins that typically couple a histidine protein kinase activity to a heme-binding domain for sensing of diatomic gases such as oxygen, carbon monoxide, and nitric oxide. Despite the relatively well-developed understanding of FixL, the importance of some of its domains has been unclear. To explore the impact of domain-domain interactions on oxygen sensing and signal transduction, we characterized and investigated Rhizobium etli hybrid sensor ReFixL. In ReFixL, the core heme-containing PAS domain and kinase region is preceded by an N-terminal PAS domain of unknown function and followed by a C-terminal receiver domain. The latter resembles a target substrate domain that usually occurs independently of the kinase and contains a phosphorylatable aspartate residue. We isolated the full-length ReFixL as a soluble holoprotein with a single heme b cofactor. Despite a low affinity for oxygen (K(d) for O2 of 738 µM), the kinase activity was completely switched off by O2 at concentrations well below the K(d). A deletion of the first PAS domain strongly increased the oxygen affinity but essentially prohibited autophosphorylation, although the truncated protein was competent to accept phosphoryl groups in trans. These studies provide new insights into histidyl-aspartyl phosphoryl transfers in two-component systems and suggest that the control of ligand affinity and signal transduction by PAS domains can be direct or indirect.


Asunto(s)
Ácido Aspártico/metabolismo , Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Hemo/metabolismo , Hemoproteínas/química , Hemoproteínas/genética , Histidina/metabolismo , Histidina Quinasa , Cinética , Ligandos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhizobium/enzimología , Rhizobium/metabolismo
2.
Biochemistry ; 48(41): 9764-74, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19764732

RESUMEN

A commonly observed coupling of sensory domains to GGDEF-class diguanylate cyclases and EAL-class phosphodiesterases has long suggested that c-di-GMP synthesizing and degrading enzymes sense environmental signals. Nevertheless, relatively few signal ligands have been identified for these sensors, and even fewer instances of in vitro switching by ligand have been demonstrated. Here we describe an Escherichia coli two-gene operon, dosCP, for control of c-di-GMP by oxygen. In this operon, the gene encoding the oxygen-sensing c-di-GMP phosphodiesterase Ec Dos (here renamed Ec DosP) follows and is translationally coupled to a gene encoding a diguanylate cyclase, here designated DosC. We present the first characterizations of DosC and a detailed study of the ligand-dose response of DosP. Our results show that DosC is a globin-coupled sensor with an apolar but accessible heme pocket that binds oxygen with a K(d) of 20 microM. The response of DosP activation to increasing oxygen concentration is a complex function of its ligand saturation such that over 80% of the activation occurs in solutions that exceed 30% of air saturation (oxygen >75 microM). Finally, we find that DosP and DosC associate into a functional complex. We conclude that the dosCP operon encodes two oxygen sensors that cooperate in the controlled production and removal of c-di-GMP.


Asunto(s)
GMP Cíclico/análogos & derivados , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/fisiopatología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bordetella pertussis/enzimología , Bordetella pertussis/metabolismo , GMP Cíclico/química , GMP Cíclico/aislamiento & purificación , GMP Cíclico/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Operón/genética , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Unión Proteica
3.
FEBS Lett ; 576(1-2): 145-50, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15474027

RESUMEN

Hypoxia-inducible factor (HIF) is a transcriptional complex that is regulated by oxygen sensitive hydroxylation of its alpha subunits by the prolyl hydroxylases PHD1, 2 and 3. To better understand the role of these enzymes in directing cellular responses to hypoxia, we derived an assay to determine their specific activity in both native cell extracts and recombinant sources of enzyme. We show that all three are capable of high rates of catalysis, in the order PHD2=PHD3>PHD1, using substrate peptides derived from the C-terminal degradation domain of HIF-alpha subunits, and that each demonstrates similar and remarkable sensitivity to oxygen, commensurate with a common role in signaling hypoxia.


Asunto(s)
Isoenzimas/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Catálisis , Extractos Celulares , Hipoxia de la Célula , Línea Celular , Humanos , Hidroxilación , Hidroxiprolina/análisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Isoenzimas/genética , Cinética , Oxígeno/metabolismo , Péptidos/química , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Interferencia de ARN , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Spodoptera/citología , Especificidad por Sustrato , Factores de Transcripción
4.
FEBS Lett ; 570(1-3): 166-70, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15251459

RESUMEN

Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways. We have used co-purification and mass spectrometry to identify proteins that interact with PHD3. The cytosolic chaperonin TRiC was found to copurify with PHD3 in extracts from several cell types. Our results indicate that PHD3 is a TRiC substrate, providing another step at which PHD3 activity may be regulated.


Asunto(s)
Chaperoninas/química , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/fisiología , Algoritmos , Línea Celular , Citosol/metabolismo , Dioxigenasas , Ácido Edético/farmacología , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica , Células HeLa , Humanos , Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Immunoblotting , Oxígeno/metabolismo , Péptidos/química , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Reticulocitos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transfección , Tripsina/química
5.
J Mol Biol ; 407(5): 633-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21320509

RESUMEN

The second messenger cyclic diguanylic acid (c-di-GMP) is implicated in key lifestyle decisions of bacteria, including biofilm formation and changes in motility and virulence. Some challenges in deciphering the physiological roles of c-di-GMP are the limited knowledge about the cellular targets of c-di-GMP, the signals that control its levels, and the proportion of free cellular c-di-GMP, if any. Here, we identify the target and the regulatory signal for a c-di-GMP-responsive Escherichia coli ribonucleoprotein complex. We show that a direct c-di-GMP target in E. coli is polynucleotide phosphorylase (PNPase), an important enzyme in RNA metabolism that serves as a 3' polyribonucleotide polymerase or a 3'-to-5' exoribonuclease. We further show that a complex of polynucleotide phosphorylase with the direct oxygen sensors DosC and DosP can perform oxygen-dependent RNA processing. We conclude that c-di-GMP can mediate signal-dependent RNA processing and that macromolecular complexes can compartmentalize c-di-GMP signaling.


Asunto(s)
GMP Cíclico/análogos & derivados , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN/metabolismo , Sistemas de Mensajero Secundario/fisiología , GMP Cíclico/metabolismo , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemo/metabolismo , Sustancias Macromoleculares , Oxígeno/metabolismo , Fosfopiruvato Hidratasa/metabolismo , ARN/genética
6.
FEBS Lett ; 585(20): 3250-8, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-21925500

RESUMEN

Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.


Asunto(s)
Proteínas Bacterianas/química , Bacterias Gramnegativas/química , Hemoglobinas/química , Cristalografía por Rayos X , Globinas/química , Humanos , Concentración de Iones de Hidrógeno , Proteínas del Tejido Nervioso/química , Neuroglobina , Oxígeno/química , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad
7.
J Mol Biol ; 388(2): 262-70, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19285985

RESUMEN

Globin-coupled sensors are heme-binding signal transducers in Bacteria and Archaea in which an N-terminal globin controls the activity of a variable C-terminal domain. Here, we report that BpeGReg, a globin-coupled diguanylate cyclase from the whooping cough pathogen Bordetella pertussis, synthesizes the second messenger bis-(3'-5')-cyclic diguanosine monophosphate (c-di-GMP) upon oxygen binding. Expression of BpeGReg in Salmonella typhimurium enhances biofilm formation, while knockout of the BpeGReg gene of B. pertussis results in decreased biofilm formation. These results represent the first identification a signal ligand for any diguanylate cyclase and provide definitive experimental evidence that a globin-coupled sensor regulates c-di-GMP synthesis and biofilm formation. We propose that the synthesis of c-di-GMP by globin sensors is a widespread phenomenon in bacteria.


Asunto(s)
Bacterias/metabolismo , GMP Cíclico/análogos & derivados , Globinas/fisiología , Biopelículas/crecimiento & desarrollo , Bordetella pertussis/enzimología , GMP Cíclico/biosíntesis , Proteínas de Escherichia coli , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Salmonella typhimurium/enzimología , Sistemas de Mensajero Secundario , Transducción de Señal
8.
Biochemistry ; 41(19): 6170-7, 2002 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-11994013

RESUMEN

Phosphorylation of the transcription factor RmFixJ is the key step in the hypoxic induction of Sinorhizobium meliloti nitrogen fixation genes. Oxygen regulates this process by binding reversibly to RmFixL, a heme protein kinase whose deoxy form catalyzes the phosphoryl transfer from ATP to RmFixJ. Here we present the first quantitative measure of the extent by which various heme ligands inhibit the turnover of RmFixJ to phospho-RmFixJ. We also quantitate the inhibition by ligands of the reaction of RmFixL with ATP, in the absence of RmFixJ, to form phospho-RmFixL, i.e., the "autophosphorylation". Phospho-RmFixL formed from autophosphorylation will transfer its phosphoryl group to RmFixJ in an oxygen-independent "phosphotransfer." Here we show that the mode of substrate presentation, i.e., simultaneous versus sequential, influences the regulation of phosphoryl transfer by heme status. Inhibition factors for O(2), CO, NO, CN(-), and imidazole in the presence of RmFixJ are drastically different from the inhibition of autophosphorylation by the same ligands. Oxidation of the heme iron in unliganded RmFixL is known to have no effect on either of the sequential reactions; yet oxidation causes a 100-fold decrease in RmFixJ turnover when ATP and RmFixJ are presented simultaneously. The profound difference between the regulation of isolated RmFixL versus the complex of RmFixL with RmFixJ shows that interaction of a response regulator with its histidine-kinase partner need not be limited to the enzymatic regions of the histidine kinase, but can extend also to its sensory domain.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , Adenosina Trifosfato/metabolismo , Dimerización , Hemo/química , Histidina Quinasa , Cinética , Ligandos , Modelos Biológicos , Oxidación-Reducción , Oxígeno/metabolismo , Fosforilación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Sinorhizobium meliloti/metabolismo
9.
Biochemistry ; 42(25): 7701-8, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12820879

RESUMEN

To evaluate the contributions of the G(beta)-2 arginine to signal transduction in oxygen-sensing heme-PAS domains, we replaced this residue with alanine in Bradyrhizobium japonicum FixL and examined the results on heme-domain structure, ligand binding, and kinase regulation. In the isolated R220A BjFixL heme-PAS domain, the iron-histidine bond was increased in length by 0.31 A, the heme flattened even without a ligand, and the interaction of a presumed regulatory loop (the FG loop) with the helix of heme attachment was weakened. Binding of carbon monoxide was similar for ferrous BjFixL and R220A BjFixL. In contrast, the level of binding of oxygen was dramatically lower (K(d) approximately 1.5 mM) for R220A BjFixL, and this was manifested as 60- and 3-fold lower on- and off-rate constants, respectively. Binding of cyanide followed the same pattern as binding of oxygen. The catalytic activity was 3-4-fold higher in the "on-state" unliganded forms of R220A BjFixL than in the corresponding BjFixL species. Cyanide regulation of this activity was strongly impaired, but some inhibition was nevertheless preserved. Carbon monoxide and nitric oxide regulation, although weak in BjFixL, were abolished from R220A BjFixL. We conclude that the G(beta)-2 arginine assists in the binding of oxygen to BjFixL but does not accomplish this by stabilizing the oxy form. This arginine is not absolutely required for regulation, although it is important for shifting a pre-existing kinase equilibrium toward the inactive state on binding of regulatory ligands. These findings support a regulatory model in which the heme-PAS domain operates as an ensemble that couples to the kinase rather than a mechanism driven by a single central switch.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Bradyrhizobium/metabolismo , Cristalización , Histidina Quinasa , Ligandos , Fosforilación , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/fisiología
10.
Science ; 298(5602): 2385-7, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12446832

RESUMEN

Neuronal PAS domain protein 2 (NPAS2) is a mammalian transcription factor that binds DNA as an obligate dimeric partner of BMAL1 and is implicated in the regulation of circadian rhythm. Here we show that both PAS domains of NPAS2 bind heme as a prosthetic group and that the heme status controls DNA binding in vitro. NPAS2-BMAL1 heterodimers, existing in either the apo (heme-free) or holo (heme-loaded) state, bound DNA avidly under favorably reducing ratios of the reduced and oxidized forms of nicotinamide adenine dinucleotide phosphate. Low micromolar concentrations of carbon monoxide inhibited the DNA binding activity of holo-NPAS2 but not that of apo-NPAS2. Upon exposure to carbon monoxide, inactive BMAL1 homodimers were formed at the expense of NPAS2-BMAL1 heterodimers. These results indicate that the heterodimerization of NPAS2, and presumably the expression of its target genes, are regulated by a gas through the heme-based sensor described here.


Asunto(s)
Monóxido de Carbono/metabolismo , ADN/metabolismo , Hemo/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Monóxido de Carbono/farmacología , Ritmo Circadiano , Dimerización , Secuencias Hélice-Asa-Hélice , Hemo/química , Ligandos , Mioglobina/metabolismo , NADP/metabolismo , Oxidación-Reducción , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA