Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(9): 768-786, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38280232

RESUMEN

In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Autosómica Dominante , Humanos , Atrofia Óptica Autosómica Dominante/genética , Mutación , Autofagia/genética , Fibroblastos , GTP Fosfohidrolasas/genética
2.
Hum Mol Genet ; 32(2): 333-350, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994048

RESUMEN

Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Mitocondriales , Animales , Proliferación Celular/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Humanos
3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569667

RESUMEN

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to PCNT pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.


Asunto(s)
Enanismo , Microcefalia , Osteocondrodisplasias , Humanos , Femenino , Embarazo , Microcefalia/genética , Exoma/genética , Transcriptoma , Retardo del Crecimiento Fetal/genética , Enanismo/genética , Osteocondrodisplasias/genética , Genotipo , Mutación
4.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974870

RESUMEN

Chemosensitivity is a crucial feature for all tumours so that they can be successfully treated, but the huge heterogeneity of these diseases, to be intended both inter- and intra-tumour, makes it a hard-to-win battle. Indeed, this genotypic and phenotypic variety, together with the adaptability of tumours, results in a plethora of chemoresistance acquisition mechanisms strongly affecting the effectiveness of treatments at different levels. Tripartite motif (TRIM) proteins are shown to be involved in some of these mechanisms thanks to their E3-ubiquitin ligase activity, but also to other activities they can exert in several cellular pathways. Undoubtedly, the ability to regulate the stability and activity of the p53 tumour suppressor protein, shared by many of the TRIMs, represents the preeminent link between this protein family and chemoresistance. Indeed, they can modulate p53 degradation, localization and subset of transactivated target genes, shifting the cellular response towards a cytoprotective or cytotoxic reaction to whatever damage induced by therapy, sometimes in a cellular-dependent way. The involvement in other chemoresistance acquisition mechanisms, independent by p53, is known, affecting pivotal processes like PI3K/Akt/NF-κB signalling transduction or Wnt/beta catenin pathway, to name a few. Hence, the inhibition or the enhancement of TRIM proteins functionality could be worth investigating to better understand chemoresistance and as a strategy to increase effectiveness of anticancer therapies.


Asunto(s)
Neoplasias/metabolismo , Transducción de Señal , Proteínas de Motivos Tripartitos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias/genética , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
BMC Med Genet ; 19(1): 129, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053855

RESUMEN

BACKGROUND: Leber's hereditary optic neuropathy (LHON) associated with mutations in mitochondrial DNA (mtDNA) typically manifests only optic nerve involvement but in some patients may develop additional neurological complications. The cause of this association is not clear. CASE PRESENTATION: We present a case of a 24-year-old male with a history of subacute, painless, and rapidly progressive bilateral vision loss. We performed ophthalmological, neurological and neuropsychological investigations in the proband and his LHON family. The proband showed optic neuropathy, epilepsy, migraine, and intellectual disability; all the maternal relatives did not manifest optic neuropathy but a moderate to severe intellectual disability. Genetic screening revealed a novel association of the LHON m.3460G > A primary mutation with the m.T961delT + C(n)ins within the mitochondrial encoded 12S RNA (MTRNR1) gene which segregates with the intellectual disability through the maternal branch of the family. We also found a significant increase of mtDNA content in all the unaffected homo/heteroplasmic mutation carriers with respect to either affected or control subjects. CONCLUSION: This is the first case reporting the co-segregation of a mutation in MTRNR1 gene with a LHON primary mutation, which may be a risk factor of the extraocular signs complicating LHON phenotype. In addition, the data herein reported, confirmed that the key factor modulating the penetrance of optic atrophy in the family is the amount of mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación/genética , Atrofia Óptica Hereditaria de Leber/genética , ARN Ribosómico/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Mitocondrias/genética , Linaje , Penetrancia , Adulto Joven
6.
Mol Cancer ; 16(1): 67, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327152

RESUMEN

BACKGROUND: TRIM8 plays a key role in controlling the p53 molecular switch that sustains the transcriptional activation of cell cycle arrest genes and response to chemotherapeutic drugs. The mechanisms that regulate TRIM8, especially in cancers like clear cell Renal Cell Carcinoma (ccRCC) and colorectal cancer (CRC) where it is low expressed, are still unknown. However, recent studies suggest the potential involvement of some microRNAs belonging to miR-17-92 and its paralogous clusters, which could include TRIM8 in a more complex pathway. METHODS: We used RCC and CRC cell models for in-vitro experiments, and ccRCC patients and xenograft transplanted mice for in vivo assessments. To measure microRNAs levels we performed RT-qPCR, while steady-states of TRIM8, p53, p21 and N-MYC were quantified at protein level by Western Blotting as well as at transcript level by RT-qPCR. Luciferase reporter assays were performed to assess the interaction between TRIM8 and specific miRNAs, and the potential effects of this interaction on TRIM8 expression. Moreover, we treated our cell models with conventional chemotherapeutic drugs or tyrosine kinase inhibitors, and measured their response in terms of cell proliferation by MTT and colony suppression assays. RESULTS: We showed that TRIM8 is a target of miR-17-5p and miR-106b-5p, whose expression is promoted by N-MYC, and that alterations of their levels affect cell proliferation, acting on the TRIM8 transcripts stability, as confirmed in ccRCC patients and cell lines. In addition, reducing the levels of miR-17-5p/miR-106b-5p, we increased the chemo-sensitivity of RCC/CRC-derived cells to anti-tumour drugs used in the clinic. Intriguingly, this occurs, on one hand, by recovering the p53 tumour suppressor activity in a TRIM8-dependent fashion and, on the other hand, by promoting the transcription of miR-34a that turns off the oncogenic action of N-MYC. This ultimately leads to cell proliferation reduction or block, observed also in colon cancer xenografts overexpressing TRIM8. CONCLUSIONS: In this paper we provided evidence that TRIM8 and its regulators miR-17-5p and miR-106b-5 participate to a feedback loop controlling cell proliferation through the reciprocal modulation of p53, miR-34a and N-MYC. Our experiments pointed out that this axis is pivotal in defining drug responsiveness of cancers such ccRCC and CRC.


Asunto(s)
Proteínas Portadoras/genética , Resistencia a Antineoplásicos/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína p53 Supresora de Tumor/genética , Regiones no Traducidas 3' , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proteínas Portadoras/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , Interferencia de ARN , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
BMC Genomics ; 14: 855, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24308330

RESUMEN

BACKGROUND: Recent studies have demonstrated an unexpected complexity of transcription in eukaryotes. The majority of the genome is transcribed and only a little fraction of these transcripts is annotated as protein coding genes and their splice variants. Indeed, most transcripts are the result of antisense, overlapping and non-coding RNA expression. In this frame, one of the key aims of high throughput transcriptome sequencing is the detection of all RNA species present in the cell and the first crucial step for RNA-seq users is represented by the choice of the strategy for cDNA library construction. The protocols developed so far provide the utilization of the entire library for a single sequencing run with a specific platform. RESULTS: We set up a unique protocol to generate and amplify a strand-specific cDNA library representative of all RNA species that may be implemented with all major platforms currently available on the market (Roche 454, Illumina, ABI/SOLiD). Our method is reproducible, fast, easy-to-perform and even allows to start from low input total RNA. Furthermore, we provide a suitable bioinformatics tool for the analysis of the sequences produced following this protocol. CONCLUSION: We tested the efficiency of our strategy, showing that our method is platform-independent, thus allowing the simultaneous analysis of the same sample with different NGS technologies, and providing an accurate quantitative and qualitative portrait of complex whole transcriptomes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Línea Celular Tumoral , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Anotación de Secuencia Molecular
8.
Neurosci Biobehav Rev ; 149: 105156, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019246

RESUMEN

Children and adolescents with neurodevelopmental disorders generally show adaptive, cognitive and motor skills impairments associated with behavioral problems, i.e., alterations in attention, anxiety and stress regulation, emotional and social relationships, which strongly limit their quality of life. This narrative review aims at providing a critical overview of the current knowledge in the field of serious games (SGs), known as digital instructional interactive videogames, applied to neurodevelopmental disorders. Indeed, a growing number of studies is drawing attention to SGs as innovative and promising interventions in managing neurobehavioral and cognitive disturbs in children with neurodevelopmental disorders. Accordingly, we provide a literature overview of the current evidence regarding the actions and the effects of SGs. In addition, we describe neurobehavioral alterations occurring in some specific neurodevelopmental disorders for which a possible therapeutic use of SGs has been suggested. Finally, we discuss findings obtained in clinical trials using SGs as digital therapeutics in neurodevelopment disorders and suggest new directions and hypotheses for future studies to bridge the gaps between clinical research and clinical practice.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Niño , Adolescente , Humanos , Trastorno por Déficit de Atención con Hiperactividad/psicología , Calidad de Vida , Trastornos del Neurodesarrollo/terapia , Relaciones Interpersonales , Ansiedad
9.
Oncol Lett ; 25(6): 267, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37216163

RESUMEN

Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.

10.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36497215

RESUMEN

The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.

11.
J Alzheimers Dis ; 90(2): 625-638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36155522

RESUMEN

BACKGROUND: Pathological and clinical features of Alzheimer's disease (AD) are in temporal discrepancy and currently accepted clinical tests provide the diagnosis decades after the initial pathophysiological events. In order to enable a more timely detection of AD, research efforts are directed to identification of biomarkers of the early symptomatic stage. Neuroinflammatory signaling pathways and inflammation-related microRNAs (miRNAs) could possibly have a crucial role in AD, making them promising potential biomarkers. OBJECTIVE: We examined the expression of circulatory miRNAs with a documented role in AD pathophysiology: miR-29a/b, miR-101, miR-125b, miR-146a, and miR-155 in the plasma of AD patients (AD, n = 12), people with mild cognitive impairment (MCI, n = 9), and normocognitive group (CTRL, n = 18). We hypothesized that these miRNA expression levels could correlate with the level of participants' cognitive decline. METHODS: The study participants completed the standardized interview, neurological examination, neuropsychological assessment, and biochemical analyses. miRNA expression levels were assessed by RT-PCR. RESULTS: Neurological and laboratory findings could not account for MCI, but miR-146a and -155 were upregulated in the MCI group compared to the control. miR-146a, known to mediate early neuroinflammatory AD events, was also upregulated in the MCI compared to AD group. ROC curve analysis for miRNA-146a showed 77.8% sensitivity and 94.4% specificity and 66.7% sensitivity and 88.9% specificity for miR-155. CONCLUSION: Determination of circulatory inflamma-miRs-146a and -155 expression, together with neuropsychological screening, could become a non-invasive tool for detecting individuals with an increased risk for AD, but research on a larger cohort is warranted.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , MicroARNs , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Inflamación/genética , MicroARNs/metabolismo , Montenegro
12.
Cells ; 11(22)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36428997

RESUMEN

YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Lectinas , Animales , Humanos , Ratones , Adipoquinas/metabolismo , Biomarcadores de Tumor , Células CACO-2 , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/metabolismo , Neoplasias Colorrectales/metabolismo , Lectinas/genética , Lectinas/metabolismo , Fenotipo , Estudios Retrospectivos , Regulación hacia Arriba
13.
Biochem J ; 431(2): 299-310, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20698827

RESUMEN

A central role for mitochondrial dysfunction has been proposed in the pathogenesis of DS (Down's syndrome), a multifactorial disorder caused by trisomy of human chromosome 21. To explore whether and how abnormalities in mitochondrial energy metabolism are involved in DS pathogenesis, we investigated the catalytic properties, gene expression and protein levels of certain proteins involved in mitochondrial ATP synthesis, such as F1F0-ATPase, ANT (adenine nucleotide translocator) and AK (adenylate kinase), in DS-HSF (human skin fibroblasts with trisomic karyotype), comparing them with euploid fibroblasts. In DS-HSF, we found a strong impairment of mitochondrial ATP synthesis due to a reduction in the catalytic efficiency of each of the investigated proteins. This impairment occurred in spite of unchanged gene expression and an increase in ANT and AK protein content, whereas the amount of ATPase subunits was selectively reduced. Interestingly, exposure of DS-HSF to dibutyryl-cAMP, a permanent derivative of cAMP, stimulated ANT, AK and ATPase activities, whereas H89, a specific PKA (protein kinase A) inhibitor, suppressed this cAMPdependent activation, indicating an involvement of the cAMP/PKA-mediated signalling pathway in the ATPase, ANT and AK deficit. Consistently, DS-HSF showed decreased basal levels of cAMP and reduced PKA activity. Despite the impairment of mitochondrial energy apparatus, no changes in cellular energy status, but increased basal levels of L-lactate, were found in DS-HSF, which partially offset for the mitochondrial energy deficit by increasing glycolysis and mitochondrial mass.These results provide new insight into the molecular basis for mitochondrial dysfunction in DS and might provide a molecular explanation for some clinical features of the syndrome.


Asunto(s)
Adenilato Quinasa/metabolismo , Metabolismo Energético/genética , Fibroblastos/enzimología , Mitocondrias/enzimología , Translocasas Mitocondriales de ADP y ATP/metabolismo , ATPasas de Translocación de Protón/metabolismo , Trisomía/genética , Adenosina Trifosfato/biosíntesis , Adenilato Quinasa/genética , Línea Celular , Respiración de la Célula/genética , Cromosomas Humanos Par 21/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Mitocondrial/metabolismo , Fibroblastos/patología , Regulación Enzimológica de la Expresión Génica , Humanos , Cinética , Ácido Láctico/metabolismo , Translocasas Mitocondriales de ADP y ATP/genética , Fosforilación Oxidativa , ATPasas de Translocación de Protón/genética , Piel/patología
14.
Nucleic Acids Res ; 37(18): 6092-104, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19700772

RESUMEN

p63 belongs to a family of transcription factors, which, while demonstrating striking conservation of functional domains, regulate distinct biological functions. Its principal role is in the regulation of epithelial commitment, differentiation and maintenance programs, during embryogenesis and in adult tissues. The p63 gene has a complex transcriptional pattern, producing two subclasses of N-terminal isoforms (TA and DeltaN) which are alternatively spliced at the C-terminus. Here, we report the identification of two new C-terminus p63 variants, we named p63 delta and epsilon, that increase from 6 to 10 the number of the p63 isoforms. Expression analysis of all p63 variants demonstrates a tissue/cell-type-specific nature of p63 alternative transcript expression, probably related to their different cellular functions. We demonstrate that the new p63 variants as DeltaN isoforms are active as transcription factors as they have nuclear localization and can modulate the expression of p63 target genes. Moreover, we report that, like DeltaNp63alpha, DeltaNp63delta and epsilon sustain cellular proliferation and that their expression decreases during keratinocyte differentiation, suggesting their involvement in this process. Taken together, our results demonstrate the existence of novel p63 proteins whose expression should be considered in future studies on the roles of p63 in the regulation of cellular functions.


Asunto(s)
Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Algoritmos , Empalme Alternativo , Secuencia de Aminoácidos , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transactivadores/genética , Factores de Transcripción , Transcripción Genética , Activación Transcripcional , Proteínas Supresoras de Tumor/genética
15.
Biomedicines ; 9(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673719

RESUMEN

Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient's premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.

16.
Cells ; 10(3)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807506

RESUMEN

The superfamily of TRIM (TRIpartite Motif-containing) proteins is one of the largest groups of E3 ubiquitin ligases. Among them, interest in TRIM8 has greatly increased in recent years. In this review, we analyze the regulation of TRIM8 gene expression and how it is involved in many cell reactions in response to different stimuli such as genotoxic stress and attacks by viruses or bacteria, playing a central role in the immune response and orchestrating various fundamental biological processes such as cell survival, carcinogenesis, autophagy, apoptosis, differentiation and inflammation. Moreover, we show how TRIM8 functions are not limited to ubiquitination, and contrasting data highlight its role either as an oncogene or as a tumor suppressor gene, acting as a "double-edged weapon". This is linked to its involvement in the selective regulation of three pivotal cellular signaling pathways: the p53 tumor suppressor, NF-κB and JAK-STAT pathways. Lastly, we describe how TRIM8 dysfunctions are linked to inflammatory processes, autoimmune disorders, rare developmental and cardiovascular diseases, ischemia, intellectual disability and cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ubiquitinación/genética , Humanos
17.
Mol Cancer ; 9: 230, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20813049

RESUMEN

BACKGROUND: Many evidences report that alternative splicing, the mechanism which produces mRNAs and proteins with different structures and functions from the same gene, is altered in cancer cells. Thus, the identification and characterization of cancer-specific splice variants may give large impulse to the discovery of novel diagnostic and prognostic tumour biomarkers, as well as of new targets for more selective and effective therapies. RESULTS: We present here a genome-wide analysis of the alternative splicing pattern of human genes through a computational analysis of normal and cancer-specific ESTs from seventeen anatomical groups, using data available in AspicDB, a database resource for the analysis of alternative splicing in human. By using a statistical methodology, normal and cancer-specific genes, splice sites and cassette exons were predicted in silico. The condition association of some of the novel normal/tumoral cassette exons was experimentally verified by RT-qPCR assays in the same anatomical system where they were predicted. Remarkably, the presence in vivo of the predicted alternative transcripts, specific for the nervous system, was confirmed in patients affected by glioblastoma. CONCLUSION: This study presents a novel computational methodology for the identification of tumor-associated transcript variants to be used as cancer molecular biomarkers, provides its experimental validation, and reports specific biomarkers for glioblastoma.


Asunto(s)
Biología Computacional/métodos , Etiquetas de Secuencia Expresada , Genoma Humano/genética , Neoplasias/genética , Empalme Alternativo/genética , Estudio de Asociación del Genoma Completo , Humanos
18.
Front Genet ; 11: 552490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193626

RESUMEN

MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5' end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.

19.
Data Brief ; 29: 105278, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32123709

RESUMEN

Using Human Gene Expression Microarrays (Agilent) technologies, we investigated changes of the level of gene expression in peripheral blood mononuclear cells of healthy subjects after 21 days of fresh table grape-rich diet and after an additional 28-day washout. Several hundreds of genes were differentially expressed after grape intake or after washout. The functional analysis of these genes detected significant changes in key processes such as inflammation and immunity, thrombosis, DNA and protein repair, autophagy and mitochondrial biogenesis. Moreover, fresh grape intake was found to influence the expression of many long non-coding RNA genes. The data can be valuable for researchers interested in nutrigenetics and nutrigenomics studies and are related to the research article "Gene expression signature induced by grape intake in healthy subjects reveals wide-spread beneficial effects on PBMCs" [1].

20.
World J Pediatr ; 15(1): 4-11, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30343446

RESUMEN

BACKGROUND: Bone remodeling is a lifelong process due to the balanced activity of osteoclasts (OCs), the bone-reabsorbing cells, and osteoblasts (OBs), and the bone-forming cells. This equilibrium is regulated by numerous cytokines, but it has been largely demonstrated that the RANK/RANKL/osteoprotegerin and Wnt/ß-catenin pathways play a key role in the control of osteoclastogenesis and osteoblastogenesis, respectively. The pro-osteoblastogenic activity of the Wnt/ß-catenin can be inhibited by sclerostin and Dickkopf-1 (DKK-1). RANKL, sclerostin and DKKs-1 are often up-regulated in bone diseases, and they are the target of new monoclonal antibodies. DATA SOURCES: The authors performed a systematic literature search in PubMed and EMBASE to June 2018, reviewed and selected articles, based on pre-determined selection criteria. RESULTS: We re-evaluated the role of RANKL, osteoprotegerin, sclerostin and DKK-1 in altered bone remodeling associated with some inherited and acquired pediatric diseases, such as type 1 diabetes mellitus (T1DM), alkaptonuria (AKU), hemophilia A, osteogenesis imperfecta (OI), 21-hydroxylase deficiency (21OH-D) and Prader-Willi syndrome (PWS). To do so, we considered recent clinical studies done on pediatric patients in which the roles of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways have been investigated, and for which innovative therapies for the treatment of osteopenia/osteoporosis are being developed. CONCLUSIONS: The case studies taken into account for this review demonstrated that quite frequently both bone reabsorbing and bone deposition are impaired in pediatric diseases. Furthermore, for some of them, bone damage began in childhood but only manifested with age. The use of denosumab could represent a valid alternative therapeutic approach to improve bone health in children, although further studies need to be carried out.


Asunto(s)
Resorción Ósea/fisiopatología , Osteoprotegerina/sangre , Ligando RANK/sangre , Vía de Señalización Wnt/fisiología , Hiperplasia Suprarrenal Congénita/sangre , Hiperplasia Suprarrenal Congénita/fisiopatología , Alcaptonuria/sangre , Alcaptonuria/fisiopatología , Biomarcadores/sangre , Remodelación Ósea/fisiología , Resorción Ósea/sangre , Niño , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/fisiopatología , Hemofilia A/sangre , Hemofilia A/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Osteogénesis Imperfecta/sangre , Osteogénesis Imperfecta/fisiopatología , Síndrome de Prader-Willi/sangre , Síndrome de Prader-Willi/fisiopatología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA