Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(18): e2117310119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486701

RESUMEN

ß-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine ß-lactamase (SBL)-catalyzed hydrolysis. The scope of ß-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone­derived acyl­enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl­enzyme complexes.


Asunto(s)
Compuestos de Azabiciclo , Inhibidores de beta-Lactamasas , Penicilinas , Sulfonas , Triazoles , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química
2.
Proc Natl Acad Sci U S A ; 119(32): e2201483119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930668

RESUMEN

The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Histona Demetilasas con Dominio de Jumonji , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidroxilación , Proteínas Intrínsecamente Desordenadas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Dominios Proteicos , Factores de Transcripción/metabolismo
3.
Bioorg Med Chem ; 99: 117597, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262305

RESUMEN

Ten-Eleven Translocation (TET) enzymes are Fe(II)/2OG-dependent oxygenases that play important roles in epigenetic regulation, but selective inhibition of the TETs is an unmet challenge. We describe the profiling of previously identified TET1-binding macrocyclic peptides. TiP1 is established as a potent TET1 inhibitor (IC50 = 0.26 µM) with excellent selectivity over other TETs and 2OG oxygenases. TiP1 alanine scanning reveals the critical roles of Trp10 and Glu11 residues for inhibition of TET isoenzymes. The results highlight the utility of the RaPID method to identify potent enzyme inhibitors with selectivity over closely related paralogues. The structure-activity relationship data generated herein may find utility in the development of chemical probes for the TETs.


Asunto(s)
Dioxigenasas , Péptidos Cíclicos , Humanos , Epigénesis Genética , Proteínas de Unión al ADN/metabolismo , Oxigenasas de Función Mixta/metabolismo , Dioxigenasas/metabolismo , Metilación de ADN , Proteínas Proto-Oncogénicas
4.
Angew Chem Int Ed Engl ; 63(40): e202410438, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38923188

RESUMEN

In animals, limiting oxygen upregulates the hypoxia-inducible factor (HIF) and promotes a metabolic shift towards glycolysis. Factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that regulates HIF function by reducing its interaction with histone acetyl transferases. HIF levels are negatively regulated by the HIF prolyl hydroxylases (PHDs) which, like FIH, are 2-oxoglutarate (2OG) oxygenases. Genetic loss of FIH promotes both glycolysis and aerobic metabolism. FIH has multiple non-HIF substrates making it challenging to connect its biochemistry with physiology. A structure-mechanism guided approach identified a highly potent in vivo active FIH inhibitor, ZG-2291, the binding of which promotes a conformational flip of a catalytically important tyrosine, enabling the selective inhibition of FIH over other Jumonji C subfamily 2OG oxygenases. Consistent with genetic studies, ZG-2291 promotes thermogenesis and ameliorates symptoms of obesity and metabolic dysfunction in ob/ob mice. The results reveal ZG-2291 as a useful probe for the physiological functions of FIH and identify FIH inhibition as a promising strategy for obesity treatment.


Asunto(s)
Obesidad , Animales , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Humanos , Tirosina/química , Tirosina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/antagonistas & inhibidores , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
5.
J Biol Chem ; 298(9): 102249, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835215

RESUMEN

Isopenicillin N synthase (IPNS) catalyzes formation of the ß-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS-Fe(II)-ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron-electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.


Asunto(s)
Oxidorreductasas , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Ferrosos/química , Hierro/química , Óxido Nítrico/química , Oxidorreductasas/química , Oxidorreductasas/genética , Oxígeno/química , Oxigenasas/metabolismo , Penicilinas/biosíntesis , Penicilinas/química , Conformación Proteica , Especificidad por Sustrato , Tiazolidinas/química
6.
J Biol Chem ; 298(6): 102020, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537551

RESUMEN

The aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986. We report biochemical and crystallographic evidence showing that FIH catalyzes the unprecedented post-translational hydroxylation of both asparaginyl residues in "VNVN" and related motifs of ankyrin repeat domains in ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11 and p18-INK4C proteins. Our biochemical results extend the substrate scope of FIH catalysis and may have implications for its biological roles, including in the hypoxic response and ASPP family function.


Asunto(s)
Repetición de Anquirina , Oxigenasas de Función Mixta , Proteínas Represoras , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Catálisis , Humanos , Hidroxilación , Hipoxia , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo
7.
Proteins ; 91(11): 1510-1524, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37449559

RESUMEN

The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas , Isoformas de Proteínas
8.
Chembiochem ; 24(4): e202200576, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36448355

RESUMEN

Transient receptor potential (TRP) channels have important roles in environmental sensing in animals. Human TRP subfamily A member 1 (TRPA1) is responsible for sensing allyl isothiocyanate (AITC) and other electrophilic sensory irritants. TRP subfamily vanilloid member 3 (TRPV3) is involved in skin maintenance. TRPV3 is a reported substrate of the 2-oxoglutarate oxygenase factor inhibiting hypoxia-inducible factor (FIH). We report biochemical and structural studies concerning asparaginyl hydroxylation of the ankyrin repeat domains (ARDs) of TRPA1 and TRPV3 catalysed by FIH. The results with ARD peptides support a previous report on FIH-catalysed TRPV3 hydroxylation and show that, of the 12 potential TRPA1 sequences investigated, one sequence (TRPA1 residues 322-348) undergoes hydroxylation at Asn336. Structural studies reveal that the TRPA1 and TRPV3 ARDs bind to FIH with a similar overall geometry to most other reported FIH substrates. However, the binding mode of TRPV3 to FIH is distinct from that of other substrates.


Asunto(s)
Repetición de Anquirina , Síndrome de Dificultad Respiratoria , Humanos , Animales , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Hidroxilación , Oxigenasas de Función Mixta/metabolismo , Unión Proteica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
9.
J Biol Chem ; 295(23): 7826-7838, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32107312

RESUMEN

Human aspartate/asparagine-ß-hydroxylase (AspH) is a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the post-translational hydroxylation of Asp and Asn residues in epidermal growth factor-like domains (EGFDs). Despite its biomedical significance, studies on AspH have long been limited by a lack of assays for its isolated form. Recent structural work has revealed that AspH accepts substrates with a noncanonical EGFD disulfide connectivity (i.e. the Cys 1-2, 3-4, 5-6 disulfide pattern). We developed stable cyclic thioether analogues of the noncanonical EGFD AspH substrates to avoid disulfide shuffling. We monitored their hydroxylation by solid-phase extraction coupled to MS. The extent of recombinant AspH-catalyzed cyclic peptide hydroxylation appears to reflect levels of EGFD hydroxylation observed in vivo, which vary considerably. We applied the assay to determine the kinetic parameters of human AspH with respect to 2OG, Fe(II), l-ascorbic acid, and substrate and found that these parameters are in the typical ranges for 2OG oxygenases. Of note, a relatively high Km for O2 suggested that O2 availability may regulate AspH activity in a biologically relevant manner. We anticipate that the assay will enable the development of selective small-molecule inhibitors for AspH and other human 2OG oxygenases.


Asunto(s)
Ácido Aspártico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/metabolismo , Oxígeno/metabolismo , Proteínas de Unión al Calcio/aislamiento & purificación , Humanos , Hidroxilación , Cinética , Espectrometría de Masas , Proteínas de la Membrana/aislamiento & purificación , Oxigenasas de Función Mixta/aislamiento & purificación , Estructura Molecular , Proteínas Musculares/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Extracción en Fase Sólida
10.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32934009

RESUMEN

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Asunto(s)
Dictyostelium/enzimología , Prolil Hidroxilasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cinética , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Prolil Hidroxilasas/química , Prolil Hidroxilasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
11.
Bioorg Med Chem ; 38: 116115, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862469

RESUMEN

Prolyl hydroxylase (PHD) enzymes play a critical role in the cellular responses to hypoxia through their regulation of the hypoxia inducible factor α (HIF-α) transcription factors. PHD inhibitors show promise for the treatment of diseases including anaemia, cardiovascular disease and stroke. In this work, a pharmacophore-based virtual high throughput screen was used to identify novel potential inhibitors of human PHD2. Two moderately potent new inhibitors were discovered, with IC50 values of 4 µM and 23 µM respectively. Cell-based studies demonstrate that these compounds exhibit protective activity in neuroblastoma cells, suggesting that they have the potential to be developed into clinically useful neuroprotective agents.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
J Fluor Chem ; 247: 109804, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34219804

RESUMEN

2-Oxoglutarate (2OG) oxygenases have important roles in human biology and are validated medicinal chemistry targets. Improving the selectivity profile of broad-spectrum 2OG oxygenase inhibitors may help enable the identification of selective inhibitors for use in functional assignment work. We report the synthesis of F- and CF3-substituted derivatives of the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylate (2,4-PDCA). Their inhibition selectivity profile against selected functionally distinct human 2OG oxygenases was determined using mass spectrometry-based assays. F-substituted 2,4-PDCA derivatives efficiently inhibit the 2OG oxygenases aspartate/asparagine-ß-hydroxylase (AspH) and the JmjC lysine-specific N ε-demethylase 4E (KDM4E); The F- and CF3-substituted 2,4-PDCA derivatives were all less efficient inhibitors of the tested 2OG oxygenases than 2,4-PDCA itself, except for the C5 F-substituted 2,4-PDCA derivative which inhibited AspH with a similar efficiency as 2,4-PDCA. Notably, the introduction of a F- or CF3-substituent at the C5 position of 2,4-PDCA results in a substantial increase in selectivity for AspH over KDM4E compared to 2,4-PDCA. Crystallographic studies inform on the structural basis of our observations, which exemplifies how a small change on a 2OG analogue can make a substantial difference in the potency of 2OG oxygenase inhibition.

13.
Angew Chem Int Ed Engl ; 60(26): 14657-14663, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887099

RESUMEN

Aspartate/asparagine-ß-hydroxylase (AspH) is a human 2-oxoglutarate (2OG) and FeII oxygenase that catalyses C3 hydroxylations of aspartate/asparagine residues of epidermal growth factor-like domains (EGFDs). Unusually, AspH employs two histidine residues to chelate FeII rather than the typical triad of two histidine and one glutamate/aspartate residue. We report kinetic, inhibition, and crystallographic studies concerning human AspH variants in which either of its FeII binding histidine residues are substituted for alanine. Both the H725A and, in particular, the H679A AspH variants retain substantial catalytic activity. Crystal structures clearly reveal metal-ligation by only a single protein histidine ligand. The results have implications for the functional assignment of 2OG oxygenases and for the design of non-protein biomimetic catalysts.


Asunto(s)
Compuestos Ferrosos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Asparagina/química , Asparagina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biocatálisis , Cristalografía por Rayos X , Compuestos Ferrosos/química , Humanos , Ligandos , Oxigenasas de Función Mixta/genética , Modelos Moleculares
14.
Bioorg Med Chem ; 28(20): 115675, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069066

RESUMEN

Human aspartate/asparagine-ß-hydroxylase (AspH) is a 2-oxoglutarate (2OG) dependent oxygenase that catalyses the hydroxylation of Asp/Asn-residues of epidermal growth factor-like domains (EGFDs). AspH is reported to be upregulated on the cell surface of invasive cancer cells in a manner distinguishing healthy from cancer cells. We report studies on the effect of small-molecule active pharmaceutical ingredients (APIs) of human cancer therapeutics on the catalytic activity of AspH using a high-throughput mass spectrometry (MS)-based inhibition assay. Human B-cell lymphoma-2 (Bcl-2)-protein inhibitors, including the (R)-enantiomer of the natural product gossypol, were observed to efficiently inhibit AspH, as does the antitumor antibiotic bleomycin A2. The results may help in the design of AspH inhibitors with the potential of increased selectivity compared to the previously identified Fe(II)-chelating or 2OG-competitive inhibitors. With regard to the clinical use of bleomycin A2 and of the Bcl-2 inhibitor venetoclax, the results suggest that possible side-effects mediated through the inhibition of AspH and other 2OG oxygenases should be considered.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Bleomicina/farmacología , Inhibidores Enzimáticos/farmacología , Gosipol/farmacología , Oxigenasas de Función Mixta/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antibióticos Antineoplásicos/química , Bleomicina/química , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Inhibidores Enzimáticos/química , Gosipol/química , Humanos , Oxigenasas de Función Mixta/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
15.
Biochem J ; 476(21): 3197-3209, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31652302

RESUMEN

LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique 'rock-and-poke' mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding.


Asunto(s)
Quinasas Lim/metabolismo , Inhibidores de Proteínas Quinasas/química , Catálisis , Cristalografía , Diseño de Fármacos , Humanos , Quinasas Lim/antagonistas & inhibidores , Quinasas Lim/química , Modelos Moleculares , Fosforilación , Especificidad por Sustrato
16.
Chemistry ; 25(8): 2019-2024, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30427558

RESUMEN

Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.


Asunto(s)
Prolil Hidroxilasas , Inhibidores de Prolil-Hidroxilasa , Ribosomas/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/química , Inhibidores de Prolil-Hidroxilasa/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Ribosomas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
17.
Nat Chem Biol ; 12(7): 539-45, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27214403

RESUMEN

Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe(2+)-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25-100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Histona Demetilasas/metabolismo , Humanos , Modelos Moleculares , Mieloma Múltiple/patología , Conformación Proteica , Relación Estructura-Actividad
18.
Bioorg Med Chem ; 26(6): 1225-1231, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29402611

RESUMEN

The combination of genetic code reprogramming and mRNA display is a powerful approach for the identification of macrocyclic peptides with high affinities to a target of interest. We have previously used such an approach to identify a potent inhibitor (CP2) of the human KDM4A and KDM4C lysine demethylases; important regulators of gene expression. In the present study, we have used genetic code reprogramming to synthesise very high diversity focused libraries (>1012 compounds) based on CP2 and, through affinity screening, used these to delineate the structure activity relationship of CP2 binding to KDM4A. In the course of these experiments we identified a CP2 analogue (CP2f-7) with ∼4-fold greater activity than CP2 in in vitro inhibition assays. This work will facilitate the development of more potent, selective inhibitors of lysine demethylases.


Asunto(s)
Inhibidores Enzimáticos/química , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Péptidos Cíclicos/química , Secuencia de Aminoácidos , Inhibidores Enzimáticos/metabolismo , Humanos , Concentración 50 Inhibidora , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células MCF-7 , Microscopía Confocal , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/metabolismo , Relación Estructura-Actividad
19.
Nature ; 488(7411): 404-8, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22842901

RESUMEN

The jumonji (JMJ) family of histone demethylases are Fe2+- and α-ketoglutarate-dependent oxygenases that are essential components of regulatory transcriptional chromatin complexes. These enzymes demethylate lysine residues in histones in a methylation-state and sequence-specific context. Considerable effort has been devoted to gaining a mechanistic understanding of the roles of histone lysine demethylases in eukaryotic transcription, genome integrity and epigenetic inheritance, as well as in development, physiology and disease. However, because of the absence of any selective inhibitors, the relevance of the demethylase activity of JMJ enzymes in regulating cellular responses remains poorly understood. Here we present a structure-guided small-molecule and chemoproteomics approach to elucidating the functional role of the H3K27me3-specific demethylase subfamily (KDM6 subfamily members JMJD3 and UTX). The liganded structures of human and mouse JMJD3 provide novel insight into the specificity determinants for cofactor, substrate and inhibitor recognition by the KDM6 subfamily of demethylases. We exploited these structural features to generate the first small-molecule catalytic site inhibitor that is selective for the H3K27me3-specific JMJ subfamily. We demonstrate that this inhibitor binds in a novel manner and reduces lipopolysaccharide-induced proinflammatory cytokine production by human primary macrophages, a process that depends on both JMJD3 and UTX. Our results resolve the ambiguity associated with the catalytic function of H3K27-specific JMJs in regulating disease-relevant inflammatory responses and provide encouragement for designing small-molecule inhibitors to allow selective pharmacological intervention across the JMJ family.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Secuencia de Aminoácidos , Animales , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Células Cultivadas , Inhibidores Enzimáticos/metabolismo , Evolución Molecular , Histonas/química , Histonas/metabolismo , Humanos , Concentración 50 Inhibidora , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/clasificación , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Macrófagos/enzimología , Macrófagos/metabolismo , Metilación/efectos de los fármacos , Ratones , Modelos Moleculares , Especificidad por Sustrato , Factor de Necrosis Tumoral alfa/biosíntesis
20.
J Biol Chem ; 291(39): 20661-73, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27502280

RESUMEN

The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/ß-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylases (PHD1-3) and an asparaginyl hydroxylase (factor-inhibiting HIF (FIH)). PHD catalysis regulates HIFα levels, and FIH catalysis regulates HIF activity. How differences in HIFα hydroxylation status relate to variations in the induction of specific HIF target gene transcription is unknown. We report studies using small molecule HIF hydroxylase inhibitors that investigate the extent to which HIF target gene expression is induced by PHD or FIH inhibition. The results reveal substantial differences in the role of prolyl and asparaginyl hydroxylation in regulating hypoxia-responsive genes in cells. PHD inhibitors with different structural scaffolds behave similarly. Under the tested conditions, a broad-spectrum 2-oxoglutarate dioxygenase inhibitor is a better mimic of the overall transcriptional response to hypoxia than the selective PHD inhibitors, consistent with an important role for FIH in the hypoxic transcriptional response. Indeed, combined application of selective PHD and FIH inhibitors resulted in the transcriptional induction of a subset of genes not fully responsive to PHD inhibition alone. Thus, for the therapeutic regulation of HIF target genes, it is important to consider both PHD and FIH activity, and in the case of some sets of target genes, simultaneous inhibition of the PHDs and FIH catalysis may be preferable.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/biosíntesis , Transcripción Genética/fisiología , Hipoxia de la Célula/fisiología , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA