Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 94(19)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32699087

RESUMEN

Chikungunya fever, a mosquito-borne disease manifested by fever, rash, myalgia, and arthralgia, is caused by chikungunya virus (CHIKV), which belongs to the genus Alphavirus of the family Togaviridae Anti-CHIKV IgG from convalescent patients is known to directly neutralize CHIKV, and the state of immunity lasts throughout life. Here, we examined the epitope of a neutralizing mouse monoclonal antibody against CHIKV, CHE19, which inhibits viral fusion and release. In silico docking analysis showed that the epitope of CHE19 was localized in the viral E2 envelope and consisted of two separate segments, an N-linker and a ß-ribbon connector, and that its bound Fab fragment on E2 overlapped the position that the E3 glycoprotein originally occupied. We showed that CHIKV-E2 is lost during the viral internalization and that CHE19 inhibits the elimination of CHIKV-E2. These findings suggested that CHE19 stabilizes the E2-E1 heterodimer instead of E3 and inhibits the protrusion of the E1 fusion loop and subsequent membrane fusion. In addition, the antigen-bound Fab fragment configuration showed that CHE19 connects to the CHIKV spikes existing on the two individual virions, leading us to conclude that the CHE19-CHIKV complex was responsible for the large virus aggregations. In our subsequent filtration experiments, large viral aggregations by CHE19 were trapped by a 0.45-µm filter. This virion-connecting characteristic of CHE19 could explain the inhibition of viral release from infected cells by the tethering effect of the virion itself. These findings provide clues toward the development of effective prophylactic and therapeutic monoclonal antibodies against the Alphavirus infection.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Neither a specific antiviral drug nor a commercial vaccine for CHIKV infection are available. Here, we show a detailed model of the docking between the envelope glycoprotein of CHIKV and our unique anti-CHIKV-neutralizing monoclonal antibody (CHE19), which inhibits CHIKV membrane fusion and virion release from CHIKV-infected cells. Homology modeling of the neutralizing antibody CHE19 and protein-protein docking analysis of the CHIKV envelope glycoprotein and CHE19 suggested that CHE19 inhibits the viral membrane fusion by stabilizing the E2-E1 heterodimer and inhibits virion release by facilitating the formation of virus aggregation due to the connecting virions, and these predictions were confirmed by experiments. Sequence information of CHE19 and the CHIKV envelope glycoprotein and their docking model will contribute to future development of an effective prophylactic and therapeutic agent.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus/efectos de los fármacos , Liberación del Virus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/farmacología , Virus Chikungunya/genética , Virus Chikungunya/fisiología , Chlorocebus aethiops , Epítopos/inmunología , Femenino , Fusión de Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/efectos de los fármacos , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/inmunología , Liberación del Virus/efectos de los fármacos
2.
J Virol ; 91(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404855

RESUMEN

The molecular mechanisms underlying chikungunya virus (CHIKV) infection are poorly characterized. In this study, we analyzed the host factors involved in CHIKV infection using genome-wide screening. Human haploid HAP1 cells, into which an exon-trapping vector was introduced, were challenged with a vesicular stomatitis virus pseudotype bearing the CHIKV E3 to E1 envelope proteins. Analysis of genes enriched in the cells resistant to the pseudotyped virus infection unveiled a critical role of N-sulfation of heparan sulfate (HS) for the infectivity of the clinically isolated CHIKV Thai#16856 strain to HAP1 cells. Knockout of NDST1 that catalyzes N-sulfation of HS greatly decreased the binding and infectivity of CHIKV Thai#16856 strain but not infectivity of Japanese encephalitis virus (JEV) and yellow fever virus (YFV). While glycosaminoglycans were commonly required for the efficient infectivity of CHIKV, JEV, and YFV, as shown by using B3GAT3 knockout cells, the tropism for N-sulfate was specific to CHIKV. Expression of chondroitin sulfate (CS) in NDST1-knockout HAP1 cells did not restore the binding of CHIKV Thai#16856 strain and the infectivity of its pseudotype but restored the infectivity of authentic CHIKV Thai#16856, suggesting that CS functions at later steps after CHIKV binding. Among the genes enriched in this screening, we found that TM9SF2 is critical for N-sulfation of HS and therefore for CHIKV infection because it is involved in the proper localization and stability of NDST1. Determination of the significance of and the relevant proteins to N-sulfation of HS may contribute to understanding mechanisms of CHIKV propagation, cell tropism, and pathogenesis.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Chikungunya virus (CHIKV) utilizes host glycosaminoglycans to bind efficiently to its target cells. However, the substructure in glycosaminoglycans required for CHIKV infection have not been characterized. Here, we unveil that N-sulfate in heparan sulfate is essential for the efficient infection of a clinical CHIKV strain to HAP1 cells and that chondroitin sulfate does not help the CHIKV binding but does play roles at the later steps in HAP1 cells. We show, by comparing previous reports using Chinese hamster ovary cells, along with another observation that enhanced infectivity of CHIKV bearing Arg82 in envelope E2 does not depend on glycosaminoglycans in HAP1 cells, that the infection manner of CHIKV varies among host cells. We also show that TM9SF2 is required for CHIKV infection to HAP1 cells because it is involved in the N-sulfation of heparan sulfate through ensuring NDST1 activity.


Asunto(s)
Virus Chikungunya/fisiología , Heparitina Sulfato/metabolismo , Proteínas de la Membrana/genética , Sulfotransferasas/genética , Acoplamiento Viral , Línea Celular , Virus Chikungunya/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Técnicas de Inactivación de Genes , Pruebas Genéticas , Glucuronosiltransferasa/genética , Humanos , Proteínas de la Membrana/metabolismo , Sulfotransferasas/metabolismo , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Virus de la Fiebre Amarilla/fisiología
3.
Intervirology ; 56(1): 6-12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22907160

RESUMEN

OBJECTIVES: Chikungunya virus (CHIKV) is an alphavirus belonging to the Togaviridae family. Alphaviruses cause a chronic non-cytopathic infection in mosquito cells, while they develop a highly cytopathic infection in cells originating from various vertebrates. In this study, we compared the cytopathic effect (CPE) induced by CHIKV in Vero cells and a mosquito cell line, C6/36 cells. METHODS: CPE and the virus titers were compared between the CHIKV-infected C6/36 and Vero cells. Apoptosis was measured by TUNEL assay, and the differences between the C6/36 and Vero cells were compared. RESULTS: CHIKV infection induced strong CPE and apoptosis in the Vero cells, but light CPE in the C6/36 cells. The virus titers produced in the C6/36 cells were much higher than those produced in the Vero cells. CONCLUSIONS: The reason CHIKV induced strong CPE is that this virus triggers strong apoptosis in Vero cells compared with C6/36 cells. CHIKV established a persistent infection in C6/36 cells after being passaged 20 times. CHIKV infection in mosquito cells was distinct from that in Vero cells. The cell and species specificity of CHIKV-induced cell death implies that the cellular and viral regulators involved in apoptosis may play an important role in determining the outcome of CHIKV infection.


Asunto(s)
Apoptosis , Virus Chikungunya/patogenicidad , Culicidae/virología , Infecciones por Alphavirus , Animales , Línea Celular , Fiebre Chikungunya , Chlorocebus aethiops , Etiquetado Corte-Fin in Situ , Especificidad de la Especie , Células Vero , Carga Viral , Replicación Viral/fisiología
4.
Virol J ; 9: 114, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22698190

RESUMEN

BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-ß in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/ß production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-ß and increased the expression of anti-viral genes, including IFN-α, IFN-ß, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.


Asunto(s)
Virus Chikungunya/fisiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Poli I-C/inmunología , Receptor Toll-Like 3/agonistas , Replicación Viral/efectos de los fármacos , Virus Chikungunya/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Proteínas de Unión al GTP , Perfilación de la Expresión Génica , Humanos , Interferón-alfa/genética , Interferón beta/genética , Interferón beta/metabolismo , Proteínas de Resistencia a Mixovirus , Carga Viral
5.
Virus Res ; 272: 197732, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31445103

RESUMEN

To visually examine the early phase of chikungunya virus (CHIKV) infection in target cells, we constructed a virus-like particle (VLP) in which the envelope protein E1 is fused with green fluorescent protein (GFP). This chikungunya VLP-GFP (CHIK-VLP-EGFP), purified by density gradient fractionation, was observed as 60-70 nm-dia. particles and was detected as tiny puncta of fluorescence in the cells. CHIK-VLP-EGFP showed binding properties similar to those of the wild-type viruses. Most of the fluorescence signals that had bound on Vero cells disappeared within 30 min at 37 °C, but not in the presence of anti-CHIKV neutralizing serum or an endosomal acidification inhibitor (bafilomycin A1), suggesting that the loss of fluorescence signals is due to the disassembly of the viral envelope following the internalization of CHIK-VLP-EGFP. In addition to these results, the fluorescence signals disappeared in highly susceptible Vero and U251MG cells but not in poorly susceptible A549 cells. Thus, CHIK-VLP-EGFP is a useful tool to examine the effects of the CHIKV neutralizing antibodies and antiviral compounds that are effective in the entry phase of CHIKV.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Replicación Viral , Animales , Células Cultivadas , Virus Chikungunya/ultraestructura , Chlorocebus aethiops , Expresión Génica , Vectores Genéticos/genética , Modelos Biológicos , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
7.
PLoS One ; 13(1): e0190418, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29342212

RESUMEN

Parasite virulence, an important factor contributing to the severity of Plasmodium falciparum infection, varies among P. falciparum strains. Relatively little is known regarding markers of virulence capable of identifying strains responsible for severe malaria. We investigated the effects of genetic variations in the P.f. merozoite surface protein 2 gene (msp2) on virulence, as it was previously postulated as a factor. We analyzed 300 msp2 sequences of single P. falciparum clone infection from patients with uncomplicated disease as well as those admitted for severe malaria with and without cerebral disease. The association of msp2 variations with disease severity was examined. We found that the N allele at codon 8 of Block 2 in the FC27-like msp2 gene was significantly associated with severe disease without cerebral complications (odds ratio = 2.73, P = 0.039), while the K allele at codon 17 of Block 4 in the 3D7-like msp2 gene was associated with cerebral malaria (odds ratio = 3.52, P = 0.024). The data suggests possible roles for the associated alleles on parasite invasion processes and immune-mediated pathogenicity. Multiplicity of infection was found to associate with severe disease without cerebral complications, but not cerebral malaria. Variations in the msp2-FC27-block 2-8N and 3D7-block 4-17K allele appear to be parasite virulence markers, and may be useful in determining the likelihood for severe and cerebral malaria. Their interactions with potential host factors for severe diseases should also be explored.


Asunto(s)
Antígenos de Protozoos/genética , Malaria Cerebral/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Secuencia de Bases , Humanos , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/química , Alineación de Secuencia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA