Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5669, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704607

RESUMEN

Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Pronóstico , Inteligencia Artificial , Metilación de ADN , Biopsia Líquida , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética
2.
World Neurosurg ; 117: e252-e258, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29936205

RESUMEN

OBJECTIVE: We sought to determine the utility of mechanomyography (MMG) in detecting and preventing pedicle breach in instrumented lumbar spine surgery. METHODS: In a prospective nonrandomized trial without controls, we selected consecutive patients to undergo intraoperative MMG during instrumented lumbar spine surgery. MMG testing was performed at the original pilot hole, after tapping, and after screw placement, with the minimum current to elicit a recorded MMG response. All patients underwent a postoperative computed tomography scan, and a single radiologist interpreted each pedicle to identify breach. Chi-square test was used to compare patients with and without breaches. Two sample Student's t-tests were used to compare changes in functional outcomes. Sensitivity and specificity of MMG were computed using receiver operating characteristic curve analysis. RESULTS: There were 122 consecutive instrumented lumbar surgery patients enrolled, with a total of 890 lumbar pedicle screws tested with MMG. The medial or inferior breach rate was 2.25%, with no statistically significant difference in Oswestry Disability Index or visual analog scale between patients who breached and who did not. For the MMG measurement from the original pilot hole, the area under the receiver operating characteristic was 0.835; the maximum combination of sensitivity (80.42%) and specificity (80.6%) was found using MMG current ≤12 mA. We found that an MMG cutoff of >12 mA resulted in a 99.5% likelihood of no medial or inferior breach. CONCLUSIONS: MMG can be safely used during instrumented lumbar spine surgery. A cutoff value of >12 mA for MMG can accurately predict and prevent medial and inferior pedicle screw breach.


Asunto(s)
Hueso Cortical/cirugía , Vértebras Lumbares/cirugía , Tornillos Pediculares , Adolescente , Adulto , Anciano , Femenino , Humanos , Cuidados Intraoperatorios , Masculino , Persona de Mediana Edad , Monitoreo Intraoperatorio/métodos , Contracción Muscular/fisiología , Miografía/métodos , Músculos Paraespinales/fisiología , Estudios Prospectivos , Falla de Prótesis/etiología , Curva ROC , Adulto Joven
3.
Open Orthop J ; 9: 218-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161161

RESUMEN

Autologous iliac crest bone graft is the preferred option for spinal fusion, but the morbidity associated with bone harvest and the need for graft augmentation in more demanding cases necessitates combining local bone with bone substitutes. The purpose of this study was to document the clinical effectiveness and safety of a novel hybrid biosynthetic scaffold material consisting of poly(D,L-lactide-co-glycolide) (PLGA, 75:25) combined by lyophilization with unmodified high molecular weight hyaluronic acid (10-12% wt:wt) as an extender for a broad range of spinal fusion procedures. We retrospectively evaluated all patients undergoing single- and multi-level posterior lumbar interbody fusion at an academic medical center over a 3-year period. A total of 108 patients underwent 109 procedures (245 individual vertebral levels). Patient-related outcomes included pain measured on a Visual Analog Scale. Radiographic outcomes were assessed at 6 weeks, 3-6 months, and 1 year postoperatively. Radiographic fusion or progression of fusion was documented in 221 of 236 index levels (93.6%) at a mean (±SD) time to fusion of 10.2+4.1 months. Single and multi-level fusions were not associated with significantly different success rates. Mean pain scores (+SD) for all patients improved from 6.8+2.5 at baseline to 3.6+2.9 at approximately 12 months. Improvements in VAS were greatest in patients undergoing one- or two-level fusion, with patients undergoing multi-level fusion demonstrating lesser but still statistically significant improvements. Overall, stable fusion was observed in 64.8% of vertebral levels; partial fusion was demonstrated in 28.8% of vertebral levels. Only 15 of 236 levels (6.4%) were non-fused at final follow-up.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA