Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 104(9): 1841-1852, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30792198

RESUMEN

CD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity. Complement-dependent cytotoxicity can be potentiated by introducing a single point mutation such as E430G in the IgG Fc domain that enhances intermolecular Fc-Fc interactions between cell-bound IgG molecules, thereby facilitating IgG hexamer formation. Antibodies specific for CD37, a target that is abundantly expressed on healthy and malignant B cells, are generally poor inducers of complement-dependent cytotoxicity. Here we demonstrate that introduction of the hexamerization-enhancing mutation E430G in CD37-specific antibodies facilitates highly potent complement-dependent cytotoxicity in chronic lymphocytic leukemia cells ex vivo Strikingly, we observed that combinations of hexamerization-enhanced CD20 and CD37 antibodies cooperated in C1q binding and induced superior and synergistic complement-dependent cytotoxicity in patient-derived cancer cells compared to the single agents. Furthermore, CD20 and CD37 antibodies colocalized on the cell membrane, an effect that was potentiated by the hexamerization-enhancing mutation. Moreover, upon cell surface binding, CD20 and CD37 antibodies were shown to form mixed hexameric antibody complexes consisting of both antibodies each bound to their own cognate target, so-called hetero-hexamers. These findings provide novel insights into the mechanisms of synergy in antibody-mediated complement-dependent cytotoxicity and provide a rationale to explore Fc-engineering and antibody hetero-hexamerization as a tool to enhance the cooperativity and therapeutic efficacy of antibody combinations.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD20/inmunología , Antígenos de Neoplasias/inmunología , Proteínas del Sistema Complemento/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Leucemia Linfocítica Crónica de Células B/genética , Tetraspaninas/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Línea Celular Tumoral , Complemento C1q/inmunología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoglobulina G/inmunología , Leucemia Linfocítica Crónica de Células B/sangre , Mutación , Unión Proteica , Rituximab/farmacología
2.
PeerJ ; 8: e8587, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117631

RESUMEN

Restoring river connectivity to rebuild and sustain land is a promising restoration strategy in coastal areas experiencing rapid land loss, such as the Mississippi river delta. Results of these large-scale hydrologic changes are preliminary, and there exists limited empirical evidence regarding how benthic communities will respond, specifically in Barataria Bay and Breton Sound in southeast Louisiana. In this review, the body of existing research in this geographic region pertaining to the drivers of benthic community response that are related to restored freshwater flow and sediment deposition is examined. Overall trends include (1) potential displacement of some species down-estuary due to reduced salinities; (2) temporary lower diversity in areas closest to the inflow; (3) increased benthic production along the marsh edge, and in tidal bayous, as a result of nutrient loading; (4) more habitat coverage in the form of submerged aquatic vegetation; and (5) reduced predation pressure from large and/or salinity-restricted predators. These trends highlight opportunities for future research that should be conducted before large-scale hydrologic changes take place.

3.
Mol Immunol ; 70: 13-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26690706

RESUMEN

Complement-dependent cytotoxicity is an important mechanism of action of certain mAbs used in cancer immunotherapy, including ofatumumab and rituximab. However, the detailed sequence of cellular changes that occur in nucleated cells attacked by mAb and complement has not been delineated. Recently developed CD20 mAbs, engineered to form hexamers on binding to cells, react with B-cells in serum, chelate C1q, and then activate complement and promote cell killing considerably more effectively than their wild-type precursors. We used these engineered mAbs as a model to investigate the sequence of events that occur when mAbs bind to B-cell lines and to primary cells from patients with chronic lymphocytic leukemia and then activate complement. Based on four-color confocal microscopy real-time movies and high resolution digital imaging, we find that after CD20 mAb binding and C1q uptake, C3b deposits on cells, followed by Ca(2+) influx, revealed by bright green signals generated on cells labeled with FLUO-4, a Ca(2+) indicator. The bright FLUO-4/Ca(2+) signal fades, replaced by punctate green signals in mitochondria, indicating Ca(2+) localization. This step leads to mitochondrial poisoning followed by cell death. The entire sequence is completed in <2 min for hexamerization-enhanced CD20 mAb-mediated killing. To our knowledge this is the first time the entire process has been characterized in detail in real time. By identifying multiple discrete steps in the cytotoxic pathway for nucleated cells our findings may inform future development and more effective application of complement-fixing mAbs to cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antineoplásicos/inmunología , Linfocitos B/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Activación de Complemento/inmunología , Humanos , Microscopía Confocal , Rituximab/inmunología , Rituximab/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA