Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 81(15): 3128-3144.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216544

RESUMEN

Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.


Asunto(s)
Proteína BRCA1/genética , Replicación del ADN/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Línea Celular , Cisplatino/farmacología , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones Endogámicos NOD , ARN Helicasas/genética , Recombinasa Rad51/genética , Proteína de Replicación A/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
3.
Cell Mol Life Sci ; 80(9): 250, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584722

RESUMEN

Cardiac glycosides (CGs) are a class of bioactive organic compounds well-known for their application in treating heart disease despite a narrow therapeutic window. Considerable evidence has demonstrated the potential to repurpose CGs for cancer treatment. Chemical modification of these CGs has been utilized in attempts to increase their anti-cancer properties; however, this has met limited success as their mechanism of action is still speculative. Recent studies have identified the DNA damage response (DDR) pathway as a target of CGs. DDR serves to coordinate numerous cellular pathways to initiate cell cycle arrest, promote DNA repair, regulate replication fork firing and protection, or induce apoptosis to avoid the survival of cells with DNA damage or cells carrying mutations. Understanding the modus operandi of cardiac glycosides will provide critical information to better address improvements in potency, reduced toxicity, and the potential to overcome drug resistance. This review summarizes recent scientific findings of the molecular mechanisms of cardiac glycosides affecting the DDR signaling pathway in cancer therapeutics from 2010 to 2022. We focus on the structural and functional differences of CGs toward identifying the critical features for DDR targeting of these agents.


Asunto(s)
Glicósidos Cardíacos , Neoplasias , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/uso terapéutico , Daño del ADN , Reparación del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal
4.
Int J Hyperthermia ; 39(1): 405-413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35236209

RESUMEN

BACKGROUND: Enediynes are anti-cancer agents that are highly cytotoxic due to their propensity for low thermal activation of radical generation. The diradical intermediate produced from Bergman cyclization of the enediyne moiety may induce DNA damage and cell lethality. The cytotoxicity of enediynes and difficulties in controlling their thermal cyclization has limited their clinical use. We recently showed that enediyne toxicity at 37 °C can be mitigated by metallation, but cytotoxic effects of 'metalloenediynes' on cultured tumor cells are potentiated by hyperthermia. Reduction of cytotoxicity at normothermia suggests metalloenediynes will have a large therapeutic margin, with cell death occurring primarily in the heated tumor. Based on our previous in vitro findings, FeSO4-PyED, an Fe co-factor complex of (Z)-N,N'-bis[1-pyridin-2-yl-meth-(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine, was prioritized for further in vitro and in vivo testing in normal human melanocytes and melanoma cells. METHODS: Clonogenic survival, apopotosis and DNA binding assays were used to determine mechanisms of enhancement of FeSO4-PyED cytotoxicity by hyperthermia. A murine human melanoma xenograft model was used to assess in vivo efficacy of FeSO4-PyED at 37 or 42.5 °C. RESULTS: FeSO4-PyED is a DNA-binding compound. Enhancement of FeSO4-PyED cytotoxicity by hyperthermia in melanoma cells was due to Bergman cyclization, diradical formation, and increased apoptosis. Thermal enhancement, however, was not observed in melanocytes. FeSO4-PyED inhibited tumor growth when melanomas were heated during drug treatment, without inducing normal tissue damage. CONCLUSION: By leveraging the unique thermal activation properties of metalloenediynes, we propose that localized moderate hyperthermia can be used to confine the cytotoxicity of these compounds to tumors, while sparing normal tissue.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciclización , Enediinos/química , Enediinos/farmacología , Enediinos/uso terapéutico , Calor , Humanos , Ratones
5.
Nucleic Acids Res ; 48(20): 11536-11550, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33119767

RESUMEN

DNA-dependent protein kinase (DNA-PK) plays a critical role in the non-homologous end joining (NHEJ) repair pathway and the DNA damage response (DDR). DNA-PK has therefore been pursued for the development of anti-cancer therapeutics in combination with ionizing radiation (IR). We report the discovery of a new class of DNA-PK inhibitors that act via a novel mechanism of action, inhibition of the Ku-DNA interaction. We have developed a series of highly potent and specific Ku-DNA binding inhibitors (Ku-DBi's) that block the Ku-DNA interaction and inhibit DNA-PK kinase activity. Ku-DBi's directly interact with the Ku and inhibit in vitro NHEJ, cellular NHEJ, and potentiate the cellular activity of radiomimetic agents and IR. Analysis of Ku-null cells demonstrates that Ku-DBi's cellular activity is a direct result of Ku inhibition, as Ku-null cells are insensitive to Ku-DBi's. The utility of Ku-DBi's was also revealed in a CRISPR gene-editing model where we demonstrate that the efficiency of gene insertion events was increased in cells pre-treated with Ku-DBi's, consistent with inhibition of NHEJ and activation of homologous recombination to facilitate gene insertion. These data demonstrate the discovery and application of new series of compounds that modulate DNA repair pathways via a unique mechanism of action.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Autoantígeno Ku/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Células Cultivadas , ADN/química , Roturas del ADN de Doble Cadena , Edición Génica , Humanos , Autoantígeno Ku/química , Ratones , Inhibidores de Proteínas Quinasas/química
6.
J Biol Chem ; 287(29): 24263-72, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22621925

RESUMEN

The treatment for advanced stage non-small cell lung cancer (NSCLC) often includes platinum-based chemotherapy and IR. Cisplatin and IR combination therapy display schedule and dose-dependent synergy, the mechanism of which is not completely understood. In a series of in vitro and cell culture assays in a NSCLC model, we investigated both the downstream and direct treatment and damage effects of cisplatin on NHEJ catalyzed repair of a DNA DSB. The results demonstrate that extracts prepared from cisplatin-treated cells are fully capable of NHEJ catalyzed repair of a DSB using a non-cisplatin-damaged DNA substrate in vitro. Similarly, using two different host cell reactivation assays, treatment of cells prior to transfection of a linear, undamaged reporter plasmid revealed no reduction in NHEJ compared with untreated cells. In contrast, transfection of a linear GFP-reporter plasmid containing site-specific, cisplatin lesions 6-bp from the termini revealed a significant impairment in DSB repair of the cisplatin-damaged DNA substrates in the absence of cellular treatment with cisplatin. Together, these data demonstrate that impaired NHEJ in combined cisplatin-IR treated cells is likely the result of a direct effect of cisplatin-DNA lesions near a DSB and that the indirect cellular effects of cisplatin treatment are not significant contributors to the synergistic cytotoxicity observed with combination cisplatin-IR treatment.


Asunto(s)
Cisplatino/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Línea Celular Tumoral , Citometría de Flujo , Humanos , Microscopía Fluorescente , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Biochem Biophys Res Commun ; 439(4): 586-90, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24041688

RESUMEN

Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib , Gefitinib , Humanos , Neoplasias Pulmonares/patología , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
8.
NAR Cancer ; 5(1): zcad003, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36755959

RESUMEN

The DNA-dependent protein kinase (DNA-PK) plays a critical role in the DNA damage response (DDR) and non-homologous end joining (NHEJ) double-strand break (DSB) repair pathways. Consequently, DNA-PK is a validated therapeutic target for cancer treatment in certain DNA repair-deficient cancers and in combination with ionizing radiation (IR). We have previously reported the discovery and development of a novel class of DNA-PK inhibitors with a unique mechanism of action, blocking the Ku 70/80 heterodimer interaction with DNA. These Ku-DNA binding inhibitors (Ku-DBi's) display nanomolar activity in vitro, inhibit cellular DNA-PK, NHEJ-catalyzed DSB repair and sensitize non-small cell lung cancer (NSCLC) cells to DSB-inducing agents. In this study, we demonstrate that chemical inhibition of the Ku-DNA interaction potentiates the cellular effects of bleomycin and IR via p53 phosphorylation through the activation of the ATM pathway. This response is concomitant with a reduction of DNA-PK catalytic subunit (DNA-PKcs) autophosphorylation at S2056 and a time-dependent increase in H2AX phosphorylation at S139. These results are consistent with Ku-DBi's abrogating DNA-PKcs autophosphorylation to impact DSB repair and DDR signaling through a novel mechanism of action, and thus represent a promising anticancer therapeutic strategy in combination with DNA DSB-inducing agents.

9.
NAR Cancer ; 5(1): zcac045, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36644397

RESUMEN

ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.

10.
ChemMedChem ; 17(21): e202200415, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36054918

RESUMEN

Cardiac glycosides (CGs) are bioactive compounds originally used to treat heart diseases, but recent studies have demonstrated their anticancer activity. We previously demonstrated that Antiaris toxicaria 2 (AT2) possesses anticancer activity in KRAS mutated lung cancers via impinging on the DNA damage response (DDR) pathway. Toward developing this class of molecules for cancer therapy, herein we report a multistep synthetic route utilizing k-strophanthidin as the initial building block for determination of structure-activity relationships (SARs). A systematic structural design approach was applied that included modifications of the sugar moiety, the glycoside linker, stereochemistry, and lactone ring substitutions to generate a library of O-glycosides and MeON-neoglycosides derivatives. These molecules were screened for their anticancer activities and their impact on DDR signaling in KRAS mutant lung cancer cells. These results demonstrate the ability to chemically synthesize CG derivatives and define the SARs to optimize AT2 as a cancer therapeutic.


Asunto(s)
Antiaris , Antineoplásicos , Glicósidos Cardíacos , Neoplasias Pulmonares , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Antiaris/química , Relación Estructura-Actividad , Neoplasias Pulmonares/tratamiento farmacológico , Daño del ADN , Glicósidos/farmacología , Antineoplásicos/química
11.
Front Oncol ; 12: 850883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463312

RESUMEN

The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.

12.
Front Oncol ; 12: 826655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251993

RESUMEN

Replication protein A (RPA) plays essential roles in DNA replication, repair, recombination, and the DNA damage response (DDR). Retrospective analysis of lung cancer patient data demonstrates high RPA expression as a negative prognostic biomarker for overall survival in smoking-related lung cancers. Similarly, relative expression of RPA is a predictive marker for response to chemotherapy. These observations are consistent with the increase in RPA expression serving as an adaptive mechanism that allows tolerance of the genotoxic stress resulting from carcinogen exposure. We have developed second-generation RPA inhibitors (RPAis) that block the RPA-DNA interaction and optimized formulation for in vivo analyses. Data demonstrate that unlike first-generation RPAis, second-generation molecules show increased cellular permeability and induce cell death via apoptosis. Second-generation RPAis elicit single-agent in vitro anticancer activity across a broad spectrum of cancers, and the cellular response suggests existence of a threshold before chemical RPA exhaustion induces cell death. Chemical RPA inhibition potentiates the anticancer activity of a series of DDR inhibitors and traditional DNA-damaging cancer therapeutics. Consistent with chemical RPA exhaustion, we demonstrate that the effects of RPAi on replication fork dynamics are similar to other known DDR inhibitors. An optimized formulation of RPAi NERx 329 was developed that resulted in single-agent anticancer activity in two non-small cell lung cancer models. These data demonstrate a unique mechanism of action of RPAis eliciting a state of chemical RPA exhaustion and suggest they will provide an effective therapeutic option for difficult-to-treat lung cancers.

13.
Cancers (Basel) ; 13(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34283091

RESUMEN

Genome stability and maintenance pathways along with their requisite proteins are critical for the accurate duplication of genetic material, mutation avoidance, and suppression of human diseases including cancer. Many of these proteins participate in these pathways by binding directly to DNA, and a subset employ oligonucleotide/oligosaccharide binding folds (OB-fold) to facilitate the protein-DNA interactions. OB-fold motifs allow for sequence independent binding to single-stranded DNA (ssDNA) and can serve to position specific proteins at specific DNA structures and then, via protein-protein interaction motifs, assemble the machinery to catalyze the replication, repair, or recombination of DNA. This review provides an overview of the OB-fold structural organization of some of the most relevant OB-fold containing proteins for oncology and drug discovery. We discuss their individual roles in DNA metabolism, progress toward drugging these motifs and their utility as potential cancer therapeutics. While protein-DNA interactions were initially thought to be undruggable, recent reports of success with molecules targeting OB-fold containing proteins suggest otherwise. The potential for the development of agents targeting OB-folds is in its infancy, but if successful, would expand the opportunities to impinge on genome stability and maintenance pathways for more effective cancer treatment.

14.
Biochemistry ; 49(4): 669-78, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20028083

RESUMEN

Nucleotide excision repair (NER) is the main pathway used for the repair of bulky DNA adducts such as those caused by UV light exposure and the chemotherapeutic drug cisplatin. The xeroderma pigmentosum group C (XPC)-Rad23B complex is involved in the recognition of these bulky DNA adducts and initiates the global genomic nucleotide excision repair pathway (GG-NER). Photo-cross-linking experiments revealed that the human XPC-Rad23B complex makes direct contact with both the cisplatin-damaged DNA strand and the complementary undamaged strand of a duplex DNA substrate. Coupling photo-cross-linking with denaturation and immunoprecipitation of protein-DNA complexes, we identified the XPC subunit in complex with damaged DNA. While the interaction of the XPC subunit with DNA was direct, studies revealed that although Rad23B was found in complex with DNA, the Rad23B-DNA interaction was largely indirect via its interaction with XPC. Using site specific cross-linking, we determined that the XPC-Rad23B complex is preferentially cross-linked to the damaged DNA when the photoreactive FAP-dCMP (exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]aminoethyl}-2'-deoxycytidine 5'-monophosphate) analogue is located to the 5' side of the cisplatin-DNA adduct. When the FAP-dCMP analogue is located to the 3' side of the adduct, no difference in binding was detected between undamaged and damaged DNA. Collectively, these data suggest a model in which XPC-DNA interactions drive the damage recognition process contacting both the damaged and undamaged DNA strand. Preferential cross-linking 5' of the cisplatin-damaged site suggests that the XPC-Rad23B complex displays orientation specific binding to eventually impart directionality to the downstream binding and incision events relative to the site of DNA damage.


Asunto(s)
Cisplatino/química , Aductos de ADN/química , Daño del ADN , Proteínas de Unión al ADN/química , Azidas/química , Azidas/metabolismo , Sitios de Unión , Cisplatino/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/química , ADN/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Desoxicitidina Monofosfato/análogos & derivados , Desoxicitidina Monofosfato/química , Desoxicitidina Monofosfato/metabolismo , Cinética , Xerodermia Pigmentosa/metabolismo
15.
Arch Biochem Biophys ; 493(2): 207-12, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19887064

RESUMEN

The myb-DNA binding domain is characterized by a 3-alpha helical bundle and three repeats of this domain drive sequence specific DNA binding of the c-myb transcription factor. Human TRF1 contains a single myb-related domain and as a homodimer, enables the sequence specific binding of telomeric DNA. In this report we provide a kinetic assessment of hTRF1 DNA binding activity. Using intrinsic fluorescence quenching we present evidence that hTRF1 binds to both telomeric and non-telomeric DNA with kinetic discrimination to allow stable binding to telomeric tracts of DNA. The position of telomere repeats does not impact binding though the number of repeats and structure does impact binding. Kinetic analysis of DNA-dependent intrinsic tryptophan fluorescence quenching of hTRF1 revealed a two step binding process that is impacted by telomere repeat length, position, and structure. These data are consistent with existing structural and equilibrium binding data for hTRF1 recognition and binding of telomere DNA.


Asunto(s)
ADN/metabolismo , Multimerización de Proteína/fisiología , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Animales , ADN/química , ADN/genética , Fluorescencia , Humanos , Cinética , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Telómero/química , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética
16.
Nucleic Acids Res ; 36(12): 4022-31, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18515838

RESUMEN

DNA-dependent protein kinase (DNA-PK) is an essential component of the nonhomologous end joining pathway (NHEJ), responsible for the repair of DNA double-strand breaks. Ku binds a DSB and recruits the catalytic subunit, DNA-PKcs, where it is activated once the kinase is bound to the DSB. The precise mechanism by which DNA activates DNA-PK remains unknown. We have investigated the effect of DNA structure on DNA-PK activation and results demonstrate that in Ku-dependent DNA-PKcs reactions, DNA-PK activation with DNA effectors containing two unannealed ends was identical to activation observed with fully duplex DNA effectors of the same length. The presence of a 6-base single-stranded extension resulted in decreased activation compared to the fully duplex DNA. DNA-PK activation using DNA effectors with compatible termini displayed increased activity compared to effectors with noncompatible termini. A strand orientation preference was observed in these reactions and suggests a model where the 3' strand of the terminus is responsible for annealing and the 5' strand is involved in activation of DNA-PK. These results demonstrate the influence of DNA structure and orientation on DNA-PK activation and provide a molecular mechanism of activation resulting from compatible termini, an essential step in microhomology-mediated NHEJ.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , ADN/química , Reparación del ADN , Activación Enzimática , Modelos Biológicos , Fosforilación , Homología de Secuencia de Ácido Nucleico
17.
ACS Med Chem Lett ; 11(6): 1118-1124, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32550990

RESUMEN

Replication protein A (RPA) is the major human single stranded DNA (ssDNA)-binding protein, playing essential roles in DNA replication, repair, recombination, and DNA-damage response (DDR). Inhibition of RPA-DNA interactions represents a therapeutic strategy for cancer drug discovery and has great potential to provide single agent anticancer activity and to synergize with both common DNA damaging chemotherapeutics and newer targeted anticancer agents. In this letter, a new series of analogues based on our previously reported TDRL-551 (4) compound were designed to improve potency and physicochemical properties. Molecular docking studies guided molecular insights, and further SAR exploration led to the identification of a series of novel compounds with low micromolar RPA inhibitory activity, increased solubility, and excellent cellular up-take. Among a series of analogues, compounds 43, 44, 45, and 46 hold promise for further development of novel anticancer agents.

18.
Mol Cancer Res ; 18(11): 1699-1710, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32801161

RESUMEN

Platinum resistance is a common occurrence in high-grade serous ovarian cancer and a major cause of ovarian cancer deaths. Platinum agents form DNA cross-links, which activate nucleotide excision repair (NER), Fanconi anemia, and homologous recombination repair (HRR) pathways. Chromatin modifications occur in the vicinity of DNA damage and play an integral role in the DNA damage response (DDR). Chromatin modifiers, including polycomb repressive complex 1 (PRC1) members, and chromatin structure are frequently dysregulated in ovarian cancer and can potentially contribute to platinum resistance. However, the role of chromatin modifiers in the repair of platinum DNA damage in ovarian cancer is not well understood. We demonstrate that the PRC1 complex member RING1A mediates monoubiquitination of lysine 119 of phosphorylated H2AX (γH2AXub1) at sites of platinum DNA damage in ovarian cancer cells. After platinum treatment, our results reveal that NER and HRR both contribute to RING1A localization and γH2AX monoubiquitination. Importantly, replication protein A, involved in both NER and HRR, mediates RING1A localization to sites of damage. Furthermore, RING1A deficiency impairs the activation of the G2-M DNA damage checkpoint, reduces the ability of ovarian cancer cells to repair platinum DNA damage, and increases sensitivity to platinum. IMPLICATIONS: Elucidating the role of RING1A in the DDR to platinum agents will allow for the identification of therapeutic targets to improve the response of ovarian cancer to standard chemotherapy regimens.


Asunto(s)
Histonas/metabolismo , Neoplasias Ováricas/genética , Platino (Metal)/uso terapéutico , Complejo Represivo Polycomb 1/metabolismo , Animales , Femenino , Humanos , Neoplasias Ováricas/patología , Fosforilación , Ubiquitinación
19.
DNA Repair (Amst) ; 7(3): 464-75, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18207464

RESUMEN

Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining.


Asunto(s)
Adenosina Trifosfato/farmacología , Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Androstadienos/farmacología , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Cafeína/farmacología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fosforilación , Wortmanina
20.
BMC Mol Biol ; 10: 86, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19715578

RESUMEN

BACKGROUND: DNA double-strand breaks (DSBs) can occur in response to ionizing radiation (IR), radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ). Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku. RESULTS: We effectively removed the C-terminal domain of Ku80 generating a truncation mutant and co-expressed this variant with wild type Ku70 in an insect cell system to create a Ku70/80DeltaC heterodimer. We also generated two single amino acid variants of Cys493, replacing this amino acid with either an alanine (C493A) or a serine (C493S), and over-expressed the variant proteins in SF9 insect cells in complex with wild type Ku70. Neither the truncation nor the amino acid substitutions alters protein expression or stability as determined by SDS-PAGE and Western blot analysis. We show that the C493 mutations do not alter the ability of Ku to bind duplex DNA in vitro under reduced conditions while truncation of the Ku80 C-terminus slightly reduced DNA binding affinity. Diamide oxidation of cysteines was shown to inhibit DNA binding similarly for both the wild-type and all variant proteins. Interestingly, differential DNA binding activity following re-reduction was observed for the Ku70/80DeltaC truncation mutant. CONCLUSION: Together, these results suggest that the C-terminal domain and C493 of Ku80 play at most a minor role in the redox regulation of Ku, and that other cysteines are likely involved, either alone or in conjunction with these regions of Ku80.


Asunto(s)
Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Animales , Antígenos Nucleares/genética , Línea Celular , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Insectos , Autoantígeno Ku , Mutación , Oxidación-Reducción , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA