Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 200: 106629, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111704

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) in neonates causes mortality and neurologic morbidity, including poor cognition with a complex neuropathology. Injury to the cholinergic basal forebrain and its rich innervation of cerebral cortex may also drive cognitive pathology. It is uncertain whether genes associated with adult cognition-related neurodegeneration worsen outcomes after neonatal HIE. We hypothesized that neocortical damage caused by neonatal HI in mice is ushered by persistent cholinergic innervation and interneuron (IN) pathology that correlates with cognitive outcome and is exacerbated by genes linked to Alzheimer's disease. We subjected non-transgenic (nTg) C57Bl6 mice and mice transgenically (Tg) expressing human mutant amyloid precursor protein (APP-Swedish variant) and mutant presenilin (PS1-ΔE9) to the Rice-Vannucci HI model on postnatal day 10 (P10). nTg and Tg mice with sham procedure were controls. Visual discrimination (VD) was tested for cognition. Cortical and hippocampal cholinergic axonal and IN pathology and Aß plaques, identified by immunohistochemistry for choline acetyltransferase (ChAT) and 6E10 antibody respectively, were counted at P210. Simple ChAT+ axonal swellings were present in all sham and HI groups; Tg mice had more than their nTg counterparts, but HI did not affect the number of axonal swellings in APP/PS1 Tg mice. In contrast, complex ChAT+ neuritic clusters (NC) occurred only in Tg mice; HI increased that burden. The abundance of ChAT+ clusters in specific regions correlated with decreased VD. The frequency of attritional ChAT+ INs in the entorhinal cortex (EC) was increased in Tg shams relative to their nTg counterparts, but HI obviated this difference. Cholinergic IN pathology in EC correlated with NC number. The Aß deposition in APP/PS1 Tg mice was not exacerbated by HI, nor did it correlate with other metrics. Adult APP/PS1 Tg mice have significant cortical cholinergic axon and EC ChAT+ IN pathologies; some pathology was exacerbated by neonatal HI and correlated with VD. Mechanisms of neonatal HI induced cognitive deficits and cortical neuropathology may be modulated by genetic risk, perhaps accounting for some of the variability in outcomes.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales Recién Nacidos , Neuronas Colinérgicas , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones , Neocórtex/metabolismo , Neocórtex/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Neuronas Colinérgicas/patología , Neuronas Colinérgicas/metabolismo , Presenilina-1/genética , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/genética , Lesiones Encefálicas/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/genética , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/genética , Humanos , Masculino , Modelos Animales de Enfermedad
2.
bioRxiv ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39386687

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of neurodevelopmental morbidity in term infants worldwide. Incidence of HIE is highest in low and middle-income communities with minimal access to neonatal intensive care and an underdeveloped infrastructure for advanced neurologic interventions. Moreover, therapeutic hypothermia, standard of care for HIE in high resourced settings, is shown to be ineffective in low and middle-income communities. With their low cost, ease of administration, and capacity to potently target the central nervous system, intranasal therapies pose a unique opportunity to be a more globally accessible treatment for neonatal HIE. Intranasal experimental therapeutics have been studied in both rodent and piglet models, but no intranasal therapeutics for neonatal HIE have undergone human clinical trials. Additional research must be done to expand the array of treatments available for use as intranasal therapies for neonatal HIE thus improving the neurologic outcomes of infants worldwide.

3.
Sci Adv ; 10(29): eadk1817, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018390

RESUMEN

Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.


Asunto(s)
Isquemia Encefálica , Imagen de Difusión por Resonancia Magnética , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Ratones , Humanos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino
4.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609182

RESUMEN

Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.

5.
J Comp Neurol ; 530(8): 1148-1163, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34687459

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) causes lifelong neurologic disability. Despite the use of therapeutic hypothermia, memory deficits and executive functions remain severely affected. Cholinergic neurotransmission from the basal forebrain to neocortex and hippocampus is central to higher cortical functions. We examined the basal forebrain by light microscopy and reported loss of choline acetyltransferase-positive (ChAT)+ neurons, at postnatal day (P) 40, in the ipsilateral medial septal nucleus (MSN) after neonatal hypoxia-ischemia (HI) in mice. There was no loss of ChAT+ neurons in the ipsilateral nucleus basalis of Meynert (nbM) and striatum. Ipsilateral striatal and nbM ChAT+ neurons were abnormal with altered immunoreactivity for ChAT, shrunken and crenated somas, and dysmorphic appearing dendrites. Using confocal images with 3D reconstruction, nbM ChAT+ dendrites in HI mice were shorter than sham (p = .0001). Loss of ChAT+ neurons in the MSN directly correlated with loss of ipsilateral hippocampal area. In the nbM and striatum, percentage of abnormal ChAT+ neurons correlated with loss of ipsilateral cerebral cortical and striatal area, respectively. Acetylcholinesterase (AChE) activity increased in adjacent ipsilateral cerebral cortex and hippocampus and the increase was linearly related to loss of cortical and hippocampal area. Numbers and size of cathepsin D+ lysosomes increased in large neurons in the ipsilateral nbM. After neonatal HI, abnormalities were found throughout the major cholinergic systems in relationship to amount of forebrain area loss. There was also an upregulation of cathepsin D+ particles within the nbM. Cholinergic neuropathology may underlie the permanent dysfunction in learning, memory, and executive function after neonatal brain injury.


Asunto(s)
Prosencéfalo Basal , Acetilcolinesterasa/metabolismo , Animales , Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferasa/metabolismo , Colinérgicos , Fibras Colinérgicas/metabolismo , Hipoxia , Isquemia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA