Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727014

RESUMEN

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Asunto(s)
Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Masculino , Adulto , Femenino , Conectoma/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto Joven , Persona de Mediana Edad
2.
Mol Psychiatry ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37537281

RESUMEN

Differential diagnosis is sometimes difficult in practical psychiatric settings, in terms of using the current diagnostic system based on presenting symptoms and signs. The creation of a novel diagnostic system using objective biomarkers is expected to take place. Neuroimaging studies and others reported that subcortical brain structures are the hubs for various psycho-behavioral functions, while there are so far no neuroimaging data-driven clinical criteria overcoming limitations of the current diagnostic system, which would reflect cognitive/social functioning. Prior to the main analysis, we conducted a large-scale multisite study of subcortical volumetric and lateralization alterations in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder using T1-weighted images of 5604 subjects (3078 controls and 2526 patients). We demonstrated larger lateral ventricles volume in schizophrenia, bipolar disorder, and major depressive disorder, smaller hippocampus volume in schizophrenia and bipolar disorder, and schizophrenia-specific smaller amygdala, thalamus, and accumbens volumes and larger caudate, putamen, and pallidum volumes. In addition, we observed a leftward alteration of lateralization for pallidum volume specifically in schizophrenia. Moreover, as our main objective, we clustered the 5,604 subjects based on subcortical volumes, and explored whether data-driven clustering results can explain cognitive/social functioning in the subcohorts. We showed a four-biotype classification, namely extremely (Brain Biotype [BB] 1) and moderately smaller limbic regions (BB2), larger basal ganglia (BB3), and normal volumes (BB4), being associated with cognitive/social functioning. Specifically, BB1 and BB2-3 were associated with severe and mild cognitive/social impairment, respectively, while BB4 was characterized by normal cognitive/social functioning. Our results may lead to the future creation of novel biological data-driven psychiatric diagnostic criteria, which may be expected to be useful for prediction or therapeutic selection.

3.
Mol Psychiatry ; 28(11): 4915-4923, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37596354

RESUMEN

According to the operational diagnostic criteria, psychiatric disorders such as schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and autism spectrum disorder (ASD) are classified based on symptoms. While its cluster of symptoms defines each of these psychiatric disorders, there is also an overlap in symptoms between the disorders. We hypothesized that there are also similarities and differences in cortical structural neuroimaging features among these psychiatric disorders. T1-weighted magnetic resonance imaging scans were performed for 5,549 subjects recruited from 14 sites. Effect sizes were determined using a linear regression model within each protocol, and these effect sizes were meta-analyzed. The similarity of the differences in cortical thickness and surface area of each disorder group was calculated using cosine similarity, which was calculated from the effect sizes of each cortical regions. The thinnest cortex was found in SZ, followed by BD and MDD. The cosine similarity values between disorders were 0.943 for SZ and BD, 0.959 for SZ and MDD, and 0.943 for BD and MDD, which indicated that a common pattern of cortical thickness alterations was found among SZ, BD, and MDD. Additionally, a generally smaller cortical surface area was found in SZ and MDD than in BD, and the effect was larger in SZ. The cosine similarity values between disorders were 0.945 for SZ and MDD, 0.867 for SZ and ASD, and 0.811 for MDD and ASD, which indicated a common pattern of cortical surface area alterations among SZ, MDD, and ASD. Patterns of alterations in cortical thickness and surface area were revealed in the four major psychiatric disorders. To our knowledge, this is the first report of a cross-disorder analysis conducted on four major psychiatric disorders. Cross-disorder brain imaging research can help to advance our understanding of the pathogenesis of psychiatric disorders and common symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Trastornos Mentales/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos
4.
Mol Psychiatry ; 28(10): 4363-4373, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37644174

RESUMEN

Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Imagen por Resonancia Magnética , Neuroimagen , Lóbulo Parietal , Síndrome , Corteza Cerebral/diagnóstico por imagen
5.
Psychol Med ; 53(11): 5136-5145, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37650341

RESUMEN

BACKGROUND: Moral injury exposure (MIE) and distress (MID) may indirectly affect the relationship between trauma exposure and alterations in autonomic regulation [assessed via high-frequency heart rate variability (hfHRV)] in civilians, but this has not been tested in prior research. We conducted two exploratory studies to examine trauma types' associations with MIE and MID among civilian medical patients (Study 1) and explore how these facets may indirectly affect the relationship between trauma type and hfHRV among civilians seeking mental health services (Study 2). METHODS: Participants recruited from a public hospital and/or community advertisements (Study 1, n = 72, 87.5% Black, 83.3% women; Study 2, n = 46, 71.7% Black, 97.8% women) completed measures assessing trauma type, MIE, and MID. In Study 1, trauma types that emerged as significant correlates of MIE and MID were entered into separate linear regression analyses. Trauma types identified were included as predictors in indirect effects models with MIE or MID as the mediator and resting hfHRV (assayed via electrocardiography) as the outcome. RESULTS: Childhood sexual abuse emerged as the only significant predictor of MIE, b = 0.38, p < 0.001; childhood sexual abuse, b = 0.26, p < 0.05, and adulthood sexual assault, b = 0.23, p < 0.05 were significant predictors of MID. Participants with greater MIE and MID demonstrated lower hfHRV. Adulthood sexual assault showed an indirect effect on hfHRV through MID, B = -0.10, s.e. = 0.06, 95%CI (-0.232 to -0.005). CONCLUSIONS: Moral injury was uniquely associated with sexual violence and lower hfHRV in civilians. Data highlight moral injury as a pathway through which autonomic dysregulation may emerge and its salience for trauma treatment selection.


Asunto(s)
Servicios de Salud Mental , Trastornos por Estrés Postraumático , Humanos , Femenino , Niño , Masculino , Frecuencia Cardíaca , Sistema Nervioso Autónomo , Electrocardiografía
6.
Mol Psychiatry ; 27(9): 3731-3737, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35739320

RESUMEN

Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.


Asunto(s)
Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Encéfalo , Imagen por Resonancia Magnética/métodos , Obesidad
7.
Curr Neurol Neurosci Rep ; 23(12): 937-946, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999830

RESUMEN

PURPOSE OF REVIEW: Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS: The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neurotransmisores , Vías Nerviosas/diagnóstico por imagen
8.
Neuroimage ; 262: 119555, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963506

RESUMEN

Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.


Asunto(s)
Enfermedades Cardiovasculares , Conectoma , Encéfalo/fisiología , Enfermedades Cardiovasculares/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Imagen por Resonancia Magnética , Factores de Riesgo
9.
Hum Brain Mapp ; 43(1): 15-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612558

RESUMEN

This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke.


Asunto(s)
Genética , Metaanálisis como Asunto , Estudios Multicéntricos como Asunto , Neuroimagen , Mapeo Encefálico , Humanos
10.
Hum Brain Mapp ; 43(1): 566-575, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463560

RESUMEN

Patients with schizophrenia have patterns of brain deficits including reduced cortical thickness, subcortical gray matter volumes, and cerebral white matter integrity. We proposed the regional vulnerability index (RVI) to translate the results of Enhancing Neuro Imaging Genetics Meta-Analysis studies to the individual level. We calculated RVIs for cortical, subcortical, and white matter measurements and a multimodality RVI. We evaluated RVI as a measure sensitive to schizophrenia-specific neuroanatomical deficits and symptoms and studied the timeline of deficit formations in: early (≤5 years since diagnosis, N = 45, age = 28.8 ± 8.5); intermediate (6-20 years, N = 30, age 43.3 ± 8.6); and chronic (21+ years, N = 44, age = 52.5 ± 5.2) patients and healthy controls (N = 76, age = 38.6 ± 12.4). All RVIs were significantly elevated in patients compared to controls, with the multimodal RVI showing the largest effect size, followed by cortical, white matter and subcortical RVIs (d = 1.57, 1.23, 1.09, and 0.61, all p < 10-6 ). Multimodal RVI was significantly correlated with multiple cognitive variables including measures of visual learning, working memory and the total score of the MATRICS consensus cognitive battery, and with negative symptoms. The multimodality and white matter RVIs were significantly elevated in the intermediate and chronic versus early diagnosis group, consistent with ongoing progression. Cortical RVI was stable in the three disease-duration groups, suggesting neurodevelopmental origins of cortical deficits. In summary, neuroanatomical deficits in schizophrenia affect the entire brain; the heterochronicity of their appearance indicates both the neurodevelopmental and progressive nature of this illness. These deficit patterns may be useful for early diagnosis and as quantitative targets for more effective treatment strategies aiming to alter these neuroanatomical deficit patterns.


Asunto(s)
Corteza Cerebral/patología , Disfunción Cognitiva/fisiopatología , Progresión de la Enfermedad , Sustancia Gris/patología , Imagen por Resonancia Magnética , Neuroimagen , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Sustancia Blanca/patología , Adolescente , Adulto , Anciano , Corteza Cerebral/diagnóstico por imagen , Enfermedad Crónica , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Imagen de Difusión Tensora , Sustancia Gris/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
11.
Hum Brain Mapp ; 43(1): 167-181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32420672

RESUMEN

Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Cerebral/anatomía & histología , Trastorno Depresivo Mayor/patología , Sustancia Gris/anatomía & histología , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Obsesivo Compulsivo/patología , Trastorno del Espectro Autista/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
12.
Hum Brain Mapp ; 43(1): 194-206, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32301246

RESUMEN

The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.


Asunto(s)
Imagen de Difusión Tensora , Trastornos Mentales , Sustancia Blanca , Investigación Biomédica/métodos , Investigación Biomédica/normas , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/normas , Humanos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/patología , Estudios Multicéntricos como Asunto , Psiquiatría/métodos , Psiquiatría/normas , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
13.
Psychiatry Clin Neurosci ; 76(5): 140-161, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35119167

RESUMEN

This review compares the main brain abnormalities in schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and 22q11.2 Deletion Syndrome (22q11DS) determined by ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) consortium investigations. We obtained ranked effect sizes for subcortical volumes, regional cortical thickness, cortical surface area, and diffusion tensor imaging abnormalities, comparing each of these disorders relative to healthy controls. In addition, the studies report on significant associations between brain imaging metrics and disorder-related factors such as symptom severity and treatments. Visual comparison of effect size profiles shows that effect sizes are generally in the same direction and scale in severity with the disorders (in the order SZ > BD > MDD). The effect sizes for 22q11DS, a rare genetic syndrome that increases the risk for psychiatric disorders, appear to be much larger than for either of the complex psychiatric disorders. This is consistent with the idea of generally larger effects on the brain of rare compared to common genetic variants. Cortical thickness and surface area effect sizes for 22q11DS with psychosis compared to 22q11DS without psychosis are more similar to those of SZ and BD than those of MDD; a pattern not observed for subcortical brain structures and fractional anisotropy effect sizes. The observed similarities in effect size profiles for cortical measures across the psychiatric disorders mimic those observed for shared genetic variance between these disorders reported based on family and genetic studies and are consistent with shared genetic risk for SZ and BD and structural brain phenotypes.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Síndrome de DiGeorge , Esquizofrenia , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/genética , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/genética , Síndrome de DiGeorge/diagnóstico por imagen , Síndrome de DiGeorge/genética , Imagen de Difusión Tensora/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
14.
Neuroimage ; 224: 117385, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950691

RESUMEN

The human brain is a dynamic system that incorporates the evolution of local activities and the reconfiguration of brain interactions. Reoccurring brain patterns, regarded as "brain states", have revealed new insights into the pathophysiology of brain disorders, particularly schizophrenia. However, previous studies only focus on the dynamics of either brain activity or connectivity, ignoring the temporal co-evolution between them. In this work, we propose to capture dynamic brain states with covarying activity-connectivity and probe schizophrenia-related brain abnormalities. We find that the state-based activity and connectivity show high correspondence, where strong and antagonistic connectivity is accompanied with strong low-frequency fluctuations across the whole brain while weak and sparse connectivity co-occurs with weak low-frequency fluctuations. In addition, graphical analysis shows that connectivity network efficiency is associated with the fluctuation of brain activities and such associations are different across brain states. Compared with healthy controls, schizophrenia patients spend more time in weakly-connected and -activated brain states but less time in strongly-connected and -activated brain states. schizophrenia patients also show lower efficiency in thalamic regions within the "strong" states. Interestingly, the atypical fractional occupancy of one brain state is correlated with individual attention performance. Our findings are replicated in another independent dataset and validated using different brain parcellation schemes. These converging results suggest that the brain spontaneously reconfigures with covarying activity and connectivity and such co-evolutionary property might provide meaningful information on the mechanism of brain disorders which cannot be observed by investigating either of them alone.


Asunto(s)
Encéfalo , Red Nerviosa , Fenómenos Fisiológicos del Sistema Nervioso , Vías Nerviosas , Adulto , Encéfalo/fisiología , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Adulto Joven
15.
Hum Brain Mapp ; 42(1): 80-94, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32965740

RESUMEN

The dynamics of the human brain span multiple spatial scales, from connectivity associated with a specific region/network to the global organization, each representing different brain mechanisms. Yet brain reconfigurations at different spatial scales are seldom explored and whether they are associated with the neural aspects of brain disorders is far from understood. In this study, we introduced a dynamic measure called step-wise functional network reconfiguration (sFNR) to characterize how brain configuration rewires at different spatial scales. We applied sFNR to two independent datasets, one includes 160 healthy controls (HCs) and 151 patients with schizophrenia (SZ) and the other one includes 314 HCs and 255 individuals with autism spectrum disorder (ASD). We found that both SZ and ASD have increased whole-brain sFNR and sFNR between cerebellar and subcortical/sensorimotor domains. At the ICN level, the abnormalities in SZ are mainly located in ICNs within subcortical, sensory, and cerebellar domains, while the abnormalities in ASD are more widespread across domains. Interestingly, the overlap SZ-ASD abnormality in sFNR between cerebellar and sensorimotor domains was correlated with the reasoning-problem-solving performance in SZ (r = -.1652, p = .0058) as well as the Autism Diagnostic Observation Schedule in ASD (r = .1853, p = .0077). Our findings suggest that dynamic reconfiguration deficits may represent a key intersecting point for SZ and ASD. The investigation of brain dynamics at different spatial scales can provide comprehensive insights into the functional reconfiguration, which might advance our knowledge of cognitive decline and other pathophysiology in brain disorders.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/fisiopatología , Conectoma/métodos , Red Nerviosa/fisiopatología , Esquizofrenia/fisiopatología , Tálamo/fisiopatología , Adolescente , Adulto , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Niño , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adulto Joven
16.
Hum Brain Mapp ; 42(8): 2556-2568, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33724588

RESUMEN

Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case-control classification. An L0 -norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi-study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools.


Asunto(s)
Corteza Cerebral/patología , Aprendizaje Profundo , Sustancia Gris/patología , Neuroimagen , Esquizofrenia/genética , Esquizofrenia/patología , Adulto , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen/métodos , Polimorfismo de Nucleótido Simple , Esquizofrenia/clasificación , Esquizofrenia/diagnóstico por imagen , Máquina de Vectores de Soporte
17.
Mol Psychiatry ; 25(8): 1822-1834, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-29895892

RESUMEN

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.


Asunto(s)
Corteza Cerebral/patología , Deleción Cromosómica , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patología , Adolescente , Adulto , Femenino , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Psicóticos/genética , Adulto Joven
18.
Cereb Cortex ; 30(10): 5460-5470, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32488253

RESUMEN

Brain structural networks have been shown to consistently organize in functionally meaningful architectures covering the entire brain. However, to what extent brain structural architectures match the intrinsic functional networks in different functional domains remains under explored. In this study, based on independent component analysis, we revealed 45 pairs of structural-functional (S-F) component maps, distributing across nine functional domains, in both a discovery cohort (n = 6005) and a replication cohort (UK Biobank, n = 9214), providing a well-match multimodal spatial map template for public use. Further network module analysis suggested that unimodal cortical areas (e.g., somatomotor and visual networks) indicate higher S-F coherence, while heteromodal association cortices, especially the frontoparietal network (FPN), exhibit more S-F divergence. Collectively, these results suggest that the expanding and maturing brain association cortex demonstrates a higher degree of changes compared with unimodal cortex, which may lead to higher interindividual variability and lower S-F coherence.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Adulto , Anciano , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
19.
Cereb Cortex ; 30(9): 4899-4913, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32318716

RESUMEN

Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Estudios de Asociación Genética , Red Nerviosa/fisiopatología , Adulto , Anciano , Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Análisis de Componente Principal , Esquizofrenia/genética , Esquizofrenia/fisiopatología
20.
Neuroimage ; 207: 116370, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31751666

RESUMEN

Although both resting and task-induced functional connectivity (FC) have been used to characterize the human brain and cognitive abilities, the potential of task-induced FCs in individualized prediction for out-of-scanner cognitive traits remains largely unexplored. A recent study Greene et al. (2018) predicted the fluid intelligence scores using FCs derived from rest and multiple task conditions, suggesting that task-induced brain state manipulation improved prediction of individual traits. Here, using a large dataset incorporating fMRI data from rest and 7 distinct task conditions, we replicated the original study by employing a different machine learning approach, and applying the method to predict two reading comprehension-related cognitive measures. Consistent with their findings, we found that task-based machine learning models often outperformed rest-based models. We also observed that combining multi-task fMRI improved prediction performance, yet, integrating the more fMRI conditions can not necessarily ensure better predictions. Compared with rest, the predictive FCs derived from language and working memory tasks were highlighted with more predictive power in predominantly default mode and frontoparietal networks. Moreover, prediction models demonstrated high stability to be generalizable across distinct cognitive states. Together, this replication study highlights the benefit of using task-based FCs to reveal brain-behavior relationships, which may confer more predictive power and promote the detection of individual differences of connectivity patterns underlying relevant cognitive traits, providing strong evidence for the validity and robustness of the original findings.


Asunto(s)
Conducta/fisiología , Encéfalo/fisiología , Individualidad , Memoria a Corto Plazo/fisiología , Vías Nerviosas/fisiología , Adulto , Conectoma/métodos , Femenino , Humanos , Lenguaje , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/fisiología , Descanso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA