Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(7): 10709-10722, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473031

RESUMEN

We demonstrate electrically pumped III-nitride edge-emitting laser diodes (LDs) with nanoporous bottom cladding grown by plasma-assisted molecular beam epitaxy on c-plane (0001) GaN. After the epitaxy of the LD structure, highly doped 350 nm thick GaN:Si cladding layer with Si concentration of 6·1019 cm-3 was electrochemically etched to obtain porosity of 15 ± 3% with pore size of 20 ± 9 nm. The devices with nanoporous bottom cladding are compared to the reference structures. The pulse mode operation was obtained at 448.7 nm with a slope efficiency (SE) of 0.2 W/A while the reference device without etched cladding layer was lasing at 457 nm with SE of 0.56 W/A. The design of the LDs with porous bottom cladding was modelled theoretically. Performed calculations allowed to choose the optimum porosity and thickness of the cladding needed for the desired optical mode confinement and reduced the risk of light leakage to the substrate and to the top-metal contact. This demonstration opens new possibilities for the fabrication of III-nitride LDs.

2.
Opt Express ; 28(20): 30299-30308, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114912

RESUMEN

A novel approach to fabricate efficient nitride light-emitting diodes (LEDs) grown on gallium polar surface operating at cryogenic temperatures is presented. We investigate and compare LEDs with standard construction with structures where p-n junction field is inverted through the use of bottom tunnel junction (BTJ). BTJ LEDs show improved turn on voltage, reduced parasitic recombination and increased quantum efficiency at cryogenic temperatures. This is achieved by moving to low resistivity n-type contacts and nitrogen polar-like built-in field with respect to current flow. It inhibits the electron overflow past quantum wells and improves hole injection even at T=12K. Therefore, as cryogenic light sources, BTJ LEDs offer significantly enhanced performance over standard LEDs.

3.
Opt Express ; 28(4): 4489-4500, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121684

RESUMEN

Recently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucidate the root causes behind the enhanced injection efficiency by employing mature laser diode structures with optimized heterojunction GaN/In0.17Ga0.83N/GaN TJs and UID GaN spacers to separate the optical mode from the heavily doped absorbing p-cladding regions. In such laser structures, polarization offsets at the electron blocking layer, spacer, and quantum barrier interfaces play discernable roles in carrier transport. By comparing a top-TJ structure to a bottom-TJ structure, and correlating features in the electroluminescence, capacitance-voltage, and current-voltage characteristics to unique signatures of the N- and Ga-polar polarization heterointerfaces in energy band diagram simulations, we identify that improved hole injection at low currents, and improved electron blocking at high currents, leads to higher injection efficiency and higher output power for the bottom-TJ device throughout 5 orders of current density (0.015-1000 A/cm2). Moreover, even with the addition of a UID GaN spacer, differential resistances are state-of-the-art, below 7 × 10-4 Ωcm2. These results highlight the virtues of the bottom-TJ geometry for use in high-efficiency laser diodes.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38666754

RESUMEN

III-nitrides possess several unique qualities, which allow them to make the world brighter, but their uniqueness is not always beneficial. The uniaxial nature of the wurtzite crystal leads to strikingly large electric polarization fields, which along with the high acceptor ionization energy cause low injection efficiency and uneven carrier distribution for multiple quantum well (QW) light emitting devices. In this work, we explore the carrier distribution in Ga-polar LED in two configurations: standard "p-up" and "p-down", which is accomplished by utilizing a bottom-tunnel junction. This enables the inversion of the sequence of the p and n layers while altering the direction of the current flow with respect to the inherent polarization. To probe the carrier distribution two, color-coded QWs are used in alternating sequences. Our study reveals that for "p-down" devices carrier transport through multiple QWs is limited by the potential barrier at the QW interface, which is in contrast to results for "p-up" structures, where hole mobility is the bottleneck. Moreover, investigated "p-down" LEDs exhibit an extremely low turn-on voltage.

5.
Cryst Growth Des ; 23(7): 5093-5101, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37426547

RESUMEN

Understanding the relation between surface morphology during epitaxy of GaN:Si and its electrical properties is important from both the fundamental and application perspectives. This work evidences the formation of nanostars in highly doped GaN:Si layers with doping level ranging from 5 × 1019 to 1 × 1020 cm-3 grown by plasma-assisted molecular beam epitaxy (PAMBE). Nanostars are 50-nm-wide platelets arranged in six-fold symmetry around the [0001] axis and have different electrical properties from the surrounding layer. Nanostars are formed in highly doped GaN:Si layers due to the enhanced growth rate along the a-direction ⟨112̅0⟩. Then, the hexagonal-shaped growth spirals, typically observed in GaN grown on GaN/sapphire templates, develop distinct arms that extend in the a-direction ⟨112̅0⟩. The nanostar surface morphology is reflected in the inhomogeneity of electrical properties at the nanoscale as evidenced in this work. Complementary techniques such as electrochemical etching (ECE), atomic force microscopy (AFM), and scanning spreading resistance microscopy (SSRM) are used to link the morphology and conductivity variations across the surface. Additionally, transmission electron microscopy (TEM) studies with high spatial resolution composition mapping by energy-dispersive X-ray spectroscopy (EDX) confirmed about 10% lower incorporation of Si in the hillock arms than in the layer. However, the lower Si content in the nanostars cannot solely be responsible for the fact that they are not etched in ECE. The compensation mechanism in the nanostars observed in GaN:Si is discussed to be an additional contribution to the local decrease in conductivity at the nanoscale.

6.
Nat Commun ; 14(1): 7562, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985775

RESUMEN

Gallium nitride-based light-emitting diodes have revolutionized the lighting market by becoming the most energy-efficient light sources. However, the power grid, in example electricity delivery system, is built based on alternating current, which raises problems for directly driving light emitting diodes that require direct current to operate effectively. In this paper, we demonstrate a proof-of-concept device that addresses this fundamental issue - a gallium nitride-based bidirectional light-emitting diode. Its structure is symmetrical with respect to the active region, which, depending on the positive or negative bias, allows for the injection of either electrons or holes from each side. It is composed of two tunnel junctions that surround the active region. In this work, the optical and electrical properties of bidirectional light emitting diodes are investigated under direct and alternating current conditions. We find that the light is emitted in both directions of the supplied current, contrary to conventional light emitting diodes; hence, bidirectional light-emitting diodes can be considered a semiconductor light source powered directly with alternating current. In addition, we show that bidirectional light-emitting diodes can be stacked vertically to multiply the optical power achieved from a single device.

7.
Materials (Basel) ; 15(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36295135

RESUMEN

This paper presents low-temperature measurements of magnetoresistivity in heavily doped n-type GaN grown by basic GaN growth technologies: molecular beam epitaxy, metal-organic vapor phase epitaxy, halide vapor phase epitaxy and ammonothermal. Additionally, GaN crystallized by High Nitrogen Pressure Solution method was also examined. It was found that all the samples under study exhibited negative magnetoresistivity at a low temperature (10 K < T < 50 K) and for some samples this effect was observed up to 100 K. This negative magnetoresistivity effect is analyzed in the frame of the weak localization phenomena in the case of three-dimensional electron gas in a highly doped semiconductor. This analysis allows for determining the phasing coherence time τφ for heavily doped n-type GaN. The obtained τφ value is proportional to T−1.34, indicating that the electron−electron interaction is the main dephasing mechanism for the free carriers.

8.
Materials (Basel) ; 15(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36079311

RESUMEN

Atomically thin metal adlayers are used as surfactants in semiconductor crystal growth. The role of the adlayer in the incorporation of dopants in GaN is completely unexplored, probably because n-type doping of GaN with Si is relatively straightforward and can be scaled up with available Si atomic flux in a wide range of dopant concentrations. However, a surprisingly different behavior of the Ge dopant is observed, and the presence of atomically thin gallium or an indium layer dramatically affects Ge incorporation, hindering the fabrication of GaN:Ge structures with abrupt doping profiles. Here, we show an experimental study presenting a striking improvement in sharpness of the Ge doping profile obtained for indium as compared to the gallium surfactant layer during GaN-plasma-assisted molecular beam epitaxy. We show that the atomically thin indium surfactant layer promotes the incorporation of Ge in contrast to the gallium surfactant layer, which promotes segregation of Ge to the surface and Ge crystallite formation. Understanding the role of the surfactant is essential to control GaN doping and to obtain extremely high n-type doped III-nitride layers using Ge, because doping levels >1020 cm−3 are not easily available with Si.

9.
Materials (Basel) ; 15(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009382

RESUMEN

The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger-Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.

10.
ACS Appl Mater Interfaces ; 13(6): 7476-7484, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529520

RESUMEN

In this work, we study the thermal degradation of In-rich InxGa1-xN quantum wells (QWs) and propose explanation of its origin based on the diffusion of metal vacancies. The structural transformation of the InxGa1-xN QWs is initiated by the formation of small initial voids created due to agglomeration of metal vacancies diffusing from the layers beneath the QW. The presence of voids in the QW relaxes the mismatch stress in the vicinity of the void and drives In atoms to diffuse to the relaxed void surroundings. The void walls enriched in In atoms are prone for thermal decomposition, what leads to a subsequent disintegration of the surrounding lattice. The phases observed in the degraded areas of QWs contain voids partly filled with crystalline In and amorphous material, surrounded by the rim of high In-content InxGa1-xN or pure InN; the remaining QW between the voids contains residual amount of In. In the case of the InxGa1-xN QWs deposited on the GaN layer doped to n-type or on unintentionally doped GaN, we observe a preferential degradation of the first grown QW, while doping of the underlying GaN layer with Mg prevents the degradation of the closest InxGa1-xN QW. The reduction in the metal vacancy concentration in the InxGa1-xN QWs and their surroundings is crucial for making them more resistant to thermal degradation.

11.
Nanoscale ; 12(10): 6137-6143, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32129781

RESUMEN

Typical methods of doping quantification are based on spectroscopy or conductivity measurements. The spatial dopant distribution assessment with nanometer-scale precision is limited usually to one or two dimensions. Here we demonstrate an approach to detect three-dimensional dopant homogeneity in GaN:Si layers using electrochemical etching (ECE). GaN:Si layers are grown by plasma-assisted molecular beam epitaxy. Dopant incorporation is uniform when the growth front morphology is atomically flat. Non-uniform Si incorporation into GaN is observed when step-bunches are present on the surface during epitaxy. In this study we show that local Si concentration in the area of step-bunch is about three times higher than in the area between step-bunches. ECE spatial resolution in our experiment is estimated to be about 50 nm. This makes ECE a simple and quantitative probing tool for local three-dimensional conductivity homogeneity assessment. Our study proves that ECE could be important both for fundamental studies of crystal growth physics and impurity incorporation and for ion-implanted structures and post-processing device control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA