Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomaterials ; 234: 119746, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945617

RESUMEN

Cell deformation occurs in many critical biological processes, including cell extravasation during immune response and cancer metastasis. These cells deform the nucleus, their largest and stiffest organelle, while passing through narrow constrictions in vivo and the underlying mechanisms still remain elusive. It is unclear which biochemical actors are responsible and whether the nucleus is pushed or pulled (or both) during deformation. Herein we use an easily-tunable poly-L-lactic acid micropillar topography, mimicking in vivo constrictions to determine the mechanisms responsible for nucleus deformation. Using biochemical tools, we determine that actomyosin contractility, vimentin and nucleo-cytoskeletal connections play essential roles in nuclear deformation, but not A-type lamins. We chemically tune the adhesiveness of the micropillars to show that pulling forces are predominantly responsible for the deformation of the nucleus. We confirm these results using an in silico cell model and propose a comprehensive mechanism for cellular and nuclear deformation during confinement. These results indicate that microstructured biomaterials are extremely versatile tools to understand how forces are exerted in biological systems and can be useful to dissect and mimic complex in vivo behaviour.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Actomiosina , Núcleo Celular , Humanos , Vimentina
2.
Nat Commun ; 9(1): 3995, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266986

RESUMEN

Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment. Here we report a new cellular ability, which we term "curvotaxis" that enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and monitor cell behavior on these topographic landscapes. We show that adherent cells avoid convex regions during their migration and position themselves in concave valleys. Live imaging combined with functional analysis shows that curvotaxis relies on a dynamic interplay between the nucleus and the cytoskeleton-the nucleus acting as a mechanical sensor that leads the migrating cell toward concave curvatures. Further analyses show that substratum curvature affects focal adhesions organization and dynamics, nuclear shape, and gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding mechanism and promotes cell-scale curvature as an essential physical cue.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/fisiología , Forma de la Célula/fisiología , Citoesqueleto/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/genética , Forma de la Célula/genética , Expresión Génica , Humanos , Ratones , Microscopía Confocal , Modelos Biológicos , Propiedades de Superficie , Imagen de Lapso de Tiempo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA