Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; 61(3): 275-290, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900315

RESUMEN

Diets high in calories can be used to model metabolic diseases, including obesity and its associated comorbidities, in animals. Drosophila melanogaster fed high-sugar diets (HSDs) exhibit complications of human obesity including hyperglycemia, hyperlipidemia, insulin resistance, cardiomyopathy, increased susceptibility to infection, and reduced longevity. We hypothesize that lipid storage in the high-sugar-fed fly's fat body (FB) reaches a maximum capacity, resulting in the accumulation of toxic lipids in other tissues or lipotoxicity. We took two approaches to characterize tissue-specific lipotoxicity. Ultra-HPLC-MS/MS and MALDI-MS imaging enabled spatial and temporal localization of lipid species in the FB, heart, and hemolymph. Substituent chain length was diet dependent, with fewer odd chain esterified FAs on HSDs in all sample types. By contrast, dietary effects on double bond content differed among organs, consistent with a model where some substituent pools are shared and others are spatially restricted. Both di- and triglycerides increased on HSDs in all sample types, similar to observations in obese humans. Interestingly, there were dramatic effects of sugar feeding on lipid ethers, which have not been previously associated with lipotoxicity. Taken together, we have identified candidate endocrine mechanisms and molecular targets that may be involved in metabolic disease and lipotoxicity.


Asunto(s)
Cuerpo Adiposo/química , Corazón , Hemolinfa/química , Lípidos/análisis , Animales , Cromatografía Líquida de Alta Presión , Drosophila melanogaster , Hipernutrición , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
2.
Insect Biochem Mol Biol ; 133: 103569, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33753225

RESUMEN

The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.


Asunto(s)
Drosophila melanogaster , Regulación de la Expresión Génica , Factor Nuclear 4 del Hepatocito , Metabolismo de los Lípidos , Oogénesis , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Cuerpo Adiposo/metabolismo , Ácidos Grasos/metabolismo , Femenino , Fertilidad , Genes de Insecto , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Homeostasis , Oogénesis/genética , Oogénesis/fisiología , Ovario/metabolismo , Triglicéridos/metabolismo
3.
Mol Cell Biol ; 38(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084810

RESUMEN

Both systemic insulin resistance and tissue-specific insulin resistance have been described in Drosophila and are accompanied by many indicators of metabolic disease. The downstream mediators of insulin-resistant pathophysiology remain unclear. We analyzed insulin signaling in the fat body studying loss and gain of function. When expression of the sole Drosophila insulin receptor (InR) was reduced in larval fat bodies, animals exhibited developmental delay and reduced size in a diet-dependent manner. Fat body InR knockdown also led to reduced survival on high-sugar diets. To look downstream of InR at potential mediators of insulin resistance, transcriptome sequencing (RNA-seq) studies in insulin-resistant fat bodies revealed differential expression of genes, including those involved in innate immunity. Obesity-associated insulin resistance led to increased susceptibility of flies to infection, as in humans. Reduced innate immunity was dependent on fat body InR expression. The peptidoglycan recognition proteins (PGRPs) PGRP-SB2 and PGRP-SC2 were selected for further study based on differential expression studies. Downregulating PGRP-SB2 selectively in the fat body protected animals from the deleterious effects of overnutrition, whereas downregulating PGRP-SC2 produced InR-like phenotypes. These studies extend earlier work linking the immune and insulin signaling pathways and identify new targets of insulin signaling that could serve as potential drug targets to treat type 2 diabetes.


Asunto(s)
Cuerpo Adiposo/inmunología , Cuerpo Adiposo/metabolismo , Resistencia a la Insulina/inmunología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dieta , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Inmunidad Innata/inmunología , Resistencia a la Insulina/fisiología , Receptor de Insulina/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA