Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32101420

RESUMEN

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

2.
Inorg Chem ; 58(9): 5807-5817, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017774

RESUMEN

Three new linearly arranged bichromophoric systems 1-3 have been prepared, and their photophysical properties have been studied, taking also advantage of femtosecond pump-probe transient absorption spectroscopy. The three compounds contain the same chromophores, that is a Ru(II)-terpy-like species and a fused expanded bipyridinium (FEBP) unit, separated by three different, variously methylated biphenylene-type bridges. The chromophores have been selected to be selectively addressable, and excitation involving the Ru-based or the FEBP-based dyes results in different excited-state decays. Upon Ru-based excitation at 570 nm, oxidative photoinduced electron transfer (OPET) takes place in 1-3 from the 3MLCT state; however, the charge-separated species does not accumulate, indicating that the charge recombination rate constant exceeds the OPET rate constant. Upon excitation of the organic dye at 400 nm, the FEBP-based 1π-π* level is prepared, which undergoes a series of intercomponent decay events, including (i) electron-exchange energy transfer leading to the MLCT manifold (SS-EnT), which successively decays according to 570 nm excitation, and (ii) reductive photoinduced electron transfer (RPET), leading to the preparation of the charge-separated (CS) state. Reductive PET, involving the FEBP-based singlet state, is much faster than oxidative PET, involving the MLCT triplet state, essentially because of driving force reasons. The rate constant of CR is intermediate between the rate constants of OPET and RPET, and this makes 1-3 capable to selectively read the 400 nm excitation as an active input to prepare the CS state, whereas excitation at wavelengths longer than 480 nm is inefficient to accumulate the CS state. Moreover, intriguing differences between the rate constants of the various processes in 1-3 have been analyzed and interpreted according to the superexchange theory for electron transfer. This allowed us to uncover the role of the electron-transfer and hole-transfer superexchange pathways in promoting the various intercomponent photoinduced decay processes occurring in 1-3.

3.
Inorg Chem ; 52(20): 11944-55, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24090453

RESUMEN

The synthesis, characterization, redox behavior, and photophysical properties (both at room temperature in fluid solution and at 77 K in rigid matrix) of a series of four new molecular dyads (2-5) containing Ru(II)- or Os(II)-bis(terpyridine) subunits as chromophores and various expanded pyridinium subunits as electron acceptors are reported, along with the reference properties of a formerly reported dyad, 1. The molecular dyads 2-4 have been designed to have their (potentially emissive) triplet metal-to-ligand charge-transfer (MLCT) and charge-separated (CS) states close in energy, so that excited-state equilibration between these levels can take place. Such a situation is not shared by limit cases 1 and 5. For dyad 1, forward photoinduced electron transfer (time constant, 7 ps) and subsequent charge recombination (time constant, 45 ps) are evidenced, while for dyad 5, photoinduced electron transfer is thermodynamically forbidden so that MLCT decays are the only active deactivation processes. As regards 2-4, CS states are formed from MLCT states with time constants of a few dozens of picoseconds. However, for these latter species, such experimental time constants are not due to photoinduced charge separation but are related to the excited-state equilibration times. Comparative analysis of time constants for charge recombination from the CS states based on proper thermodynamic and kinetic models highlighted that, in spite of their apparently affiliated structures, dyads 1-4 do not constitute a homologous series of compounds as far as intercomponent electron transfer processes are concerned.

4.
Inorg Chem ; 51(9): 5342-52, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22524304

RESUMEN

A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.

5.
J Phys Chem A ; 116(30): 7880-91, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22724580

RESUMEN

In regard to semirigid donor-spacer-acceptor (D-S-A) dyads devised for photoinduced charge separation and built from an unsaturated spacer, there exists a strategy of design referred to as "geometrical decoupling" that consists in introducing an inner-S twist angle approaching 90° to minimize adverse D/A mutual electronic influence. The present work aims at gaining further insights into the actual impact of the use of bulky substituents (R) of the alkyl type on the electronic structure of spacers (S) of the oligo-p-phenylene type, which can be critical in the functioning of derived dyads. To this end, a series of 12 novel expanded pyridiniums (EPs), regarded as model S-A assemblies, was synthesized and its structural, electronic, and photophysical properties were investigated at both experimental and theoretical levels. These EPs result from the combination of 4 types of pyridinium-based acceptor moieties with the three following types of S subunits connected at position 4 of the pyridinum core: xylyl (X), xylyl-phenyl (XP), and xylyl-tolyl (XT). From comparison of collected data with those already reported for eight other EPs based on the same A components but linked to S fragments of two other types (i.e., phenyl, P, and biphenyl, PP), the following quantitative order in regard to the pivotal S-centered HOMO energy perturbation was derived (sorted by increasing destabilization): P < X ≪ PP ≈< XP ≈< XT. This indicates that spacers (S) are primarily distinguished on the basis of their mono- or biaryl composition and secondarily by their number of methyl substituents (R). The electron-donating inductive contribution of methyl substituents (HOMO destabilization) more than counterbalances the effect of conjugation disruption (HOMO stabilization). This "compensation effect" suggests that mildly electron-withdrawing hindering groups are better suited for "geometrical decoupling", given that high-energy S-centered occupied MOs can assist charge recombination within D-S-A dyads.


Asunto(s)
Técnicas Electroquímicas , Compuestos de Piridinio/química , Cristalografía por Rayos X , Electrones , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Compuestos de Piridinio/síntesis química , Teoría Cuántica
6.
J Am Chem Soc ; 132(46): 16700-13, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21028900

RESUMEN

The multifaceted potentialities of expanded pyridiniums (EPs), based on one pyridinium core bearing a 4-pyridyl or 4-pyridylium as the N-pyridinio group, are established at both experimental and theoretical levels. Two classes of head-to-tail (htt) EPs were designed, and their first representative elements were synthesized and fully characterized. The branched (B) family is made up of 2,6-diphenyl-4-aryl-1,4'-bipyridin-1-ium (or 1,1'-diium) species, denoted 1B and 2B for monocationic EPs (with aryl = phenyl and biphenyl, respectively) and 1B(Me) and 2B(Me) for related quaternarized dicationic species. The series of fused (F) analogues comprises 9-aryl-benzo[c]benzo[1,2]quinolizino[3,4,5,6-ija][1,6]naphthyridin-15-ium species, denoted 1F and 2F, and their 2,15-diium derivatives referred to as 1F(Me) and 2F(Me). Electrochemistry (in MeCN vs SCE) reveals that branched EPs undergo a single reversible bielectronic reduction at ca. -0.92 V for 1B/2B and -0.59 V for 1B(Me)/2B(Me), whereas pericondensed species show two reversible monoelectronic reductions at ca. -0.83 and -1.59 V for 1F/2F and ca. -0.42 and -1.07 V for 1F(Me)/2F(Me). Regarding electronic absorption features, all htt-EP chromophores show absorptivity in the range of ca. 1-4 × 10(4) M(-1) cm(-1), with red-edge absorptions extending toward 450 and 500 nm (in MeCN) for 2B(Me) and 2F(Me), respectively. These lowest-energy pi-pi* transitions are ascribed to intramolecular charge transfer between the electron-releasing biphenyl group and the htt-bipyridinium electron-withdrawing subsystems. EPs display room-temperature photoemission quantum yields ranging from 10% to 50%, with the exception of 1B, and branched luminophores are characterized by larger Stokes shifts (8000-10 000 cm(-1)) than fused ones. Lastly, a method to predict the efficiency of photobiscyclization of branched EPs into fused ones, based on the analysis of computed difference maps in total electron density for singlet excited states, is proposed.

7.
Chemistry ; 16(36): 11047-63, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20715195

RESUMEN

This study evaluates the impact of the extension of the π-conjugated system of pyridiniums on their various properties. The molecular scaffold of aryl-substituted expanded pyridiniums (referred to as branched species) can be photochemically bis-cyclized into the corresponding fused polycyclic derivatives (referred to as pericondensed species). The representative 1,2,4,6-tetraphenylpyridinium (1(H)) and 1,2,3,5,6-pentaphenyl-4-(p-tolyl)pyridinium (2(Me)) tetra- and hexa-branched pyridiniums are herein compared with their corresponding pericondensed derivatives, the fully fused 9-phenylbenzo[1,2]quinolizino[3,4,5,6-def]phenanthridinium (1(H)f) and the hitherto unknown hemifused 9-methyl-1,2,3-triphenylbenzo[h]phenanthro[9,10,1-def]isoquinolinium (2(Me)f). Combined solid-state X-ray crystallography and solution NMR experiments showed that stacking interactions are barely efficient when the pericondensed pyridiniums are not appropriately substituted. The electrochemical study revealed that the first reduction process of all the expanded pyridiniums occurs at around -1 V vs. SCE, which indicates that the lowest unoccupied molecular orbital (LUMO) remains essentially localized on the pyridinium core regardless of pericondensation. In contrast, the electronic and photophysical properties are significantly affected on going from branched to pericondensed pyridiniums. Typically, the number of absorption bands increases with extended activity towards the visible region (down to ca. 450 nm in MeCN), whereas emission quantum yields are increased by three orders of magnitude (at ca. 0.25 on average). A relationship is established between the observed differential impact of the pericondensation and the importance of the localized LUMO on the properties considered: predominant for the first reduction process compared with secondary for the optical and photophysical properties.


Asunto(s)
Compuestos Policíclicos/química , Compuestos de Piridinio/química , Cristalografía por Rayos X , Ciclización , Electroquímica , Electrónica , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
Chemistry ; 14(36): 11385-405, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19016557

RESUMEN

Ground-state (GS) and excited-state (ES) properties of novel photomagnetic molecular devices (PMMDs) are investigated by means of density functional theory. These organic PMMDs undergo a ferromagnetic alignment of their intramolecular spins in the lowest ES. They are comprised of: 1) an anthracene unit (An) as both the photosensitizer (P) and a transient spin carrier (SC) in the triplet ES ((3)An*); 2) imino-nitroxyl (IN) or oxoverdazyl (OV) stable radical(s) as the dangling SC(s); and 3) bridge(s) (B) connecting peripheral SC(s) to the An core at positions 9 and 10. Improving the efficiency of the PMMDs involves strengthening the ES intramolecular exchange coupling (J(ES)) between transient and persistent SCs, hence the choice of 2-pyrimidinyl (pm) as B elements to replace the original p-phenylene (ph). Dissymmetry of the pm connectors leads to [SC-B-P-B-SC] regio-isomers int. and ext., depending on whether the pyrimidinic nitrogen atoms point towards the An core or the peripheral SCs, respectively. For the int. regio-isomers we show that the photoinduced spin alignment is significantly improved because the J(ES)/k(B) value is increased by a factor of more than two compared with the ph-based analogue (J(ES)/k(B)>+400 K). Most importantly, we show that the optimal J(ES)/k(B) value ( approximately +600 K) could be reached in the event of an unexpected saddle-shaped structural distortion of the lowest ES. Accounting for this intriguing behavior requires dissection of the combined effects of 1) borderline intramolecular steric hindrance about key An-pm linkages, which translates into the flatness of the potential energy surface; 2) spin density disruption due to the presence of radicals; and 3) possibly intervening photochemistry, with An acting as a light-triggered electron donor while pm, IN, and OV behave as electron acceptors. Finally, potentialities attached to the [(SC)-pm-An-pm](int) pattern are disclosed.


Asunto(s)
Magnetismo , Antioxidantes/química , Radicales Libres/química , Modelos Químicos , Estructura Molecular , Óxidos de Nitrógeno/química , Fotoquímica , Teoría Cuántica
9.
Chem Commun (Camb) ; 46(28): 5169-71, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20544073

RESUMEN

Intercalation of small molecules into DNA is photochemically achieved by in situ irradiation of a tetraaryl-pyridinium species. Such a "DNA intercalation on demand" process could highlight an alternative pathway to anticancer basic research, based on photo-activable DNA binders.


Asunto(s)
ADN/química , Sustancias Intercalantes/química , Dicroismo Circular , Procesos Fotoquímicos
10.
Chemistry ; 9(8): 1692-705, 2003 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-12698427

RESUMEN

Following a bottom-up approach to nanomaterials, we present a rational synthetic route to high-spin and anisotropic molecules based on hexacyanometalate [M(CN)(6)](3-) cores. Part 1 of this series was devoted to isotropic heptanuclear clusters; herein, we discuss the nuclearity and the structural anisotropy of nickel(II) derivatives. By changing either the stoichiometry, the nature of the terminal ligand, or the counterion, it is possible to tune the nuclearity of the polynuclear compounds and therefore to control the structural anisotropy. We present the synthesis and the characterisation by mass spectrometry, X-ray crystallography and magnetic susceptibility of bi-, tri-, tetra-, hexa- and heptanuclear species [M(CN)(n)(CN-M'L)(6-n)](m+) (with n=0-5; M=Cr(III), Co(III), M'=Ni(II); L=pentadentate ligand). Thus, with M=Cr(III), d(3), S=3/2, a dinuclear complex [Cr(III)(CN)(5)(CN-NiL(n))](9+), (L(n)=polydentate ligand) was built and characterised, showing a spin ground state, S(G)=5/2, with a ferromagnetic interaction J(Cr,Cu)=+18.5 cm(-1). With M=Co(III) (d(6), S=0) were built di-, tri-, tetra-, hexa and hepanuclear CoNi species: CoNi, CoNi(2), CoNi(3), CoNi(5) and CoNi(6). By a first approximation, they behave as one, two, three, five and six isolated nickel(II) complexes, respectively, but more accurate studies allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA