Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041486

RESUMEN

Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at late stages of their development. However, the genetic basis of germline fate determination and how it has evolved during land plant evolution are still poorly understood. Here, we report that the plant homeodomain (PHD)-finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of germline specification in the liverwort Marchantia polymorpha. Loss of MpGLID function causes failure of germline initiation, leading to absence of sperm and egg cells. Remarkably, overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID orthologue, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologues has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes but rewired in flowering plants for male germline fate determination.

2.
Plant J ; 101(3): 590-603, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31610057

RESUMEN

Sexual reproduction in flowering plants relies on the production of haploid gametophytes that consist of germline and supporting cells. During male gametophyte development, the asymmetric mitotic division of an undetermined unicellular microspore segregates these two cell lineages. To explore genetic regulation underlying this process, we screened for pollen cell patterning mutants and isolated the heterozygous myb81-1 mutant that sheds ~50% abnormal pollen. Typically, myb81-1 microspores fail to undergo pollen mitosis I (PMI) and arrest at polarized stage with a single central vacuole. Although most myb81-1 microspores degenerate without division, a small fraction divides at later stages and fails to acquire correct cell fates. The myb81-1 allele is transmitted normally through the female, but rarely through pollen. We show that myb81-1 phenotypes result from impaired function of the GAMYB transcription factor MYB81. The MYB81 promoter shows microspore-specific activity and a MYB81-RFP fusion protein is only expressed in a narrow window prior to PMI. Ectopic expression of MYB81 driven by various promoters can severely impair vegetative or reproductive development, reflecting the strict microspore-specific control of MYB81. Our data demonstrate that MYB81 has a key role in the developmental progression of microspores, enabling formation of the two male cell lineages that are essential for sexual reproduction in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores Generales de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Linaje de la Célula , Haploidia , Mitosis , Fenotipo , Polen/genética , Polen/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores Generales de Transcripción/genética
3.
Plant Physiol ; 173(1): 280-293, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624837

RESUMEN

The development of the male germline within pollen relies upon the activation of numerous target genes by the transcription factor DUO POLLEN1 (DUO1). The expression of DUO1 is restricted to the male germline and is first detected shortly after the asymmetric division that segregates the germ cell lineage. Transcriptional regulation is critical in controlling DUO1 expression, since transcriptional and translational fusions show similar expression patterns. Here, we identify key promoter sequences required for the germline-specific regulation of DUO1 transcription. Combining promoter deletion analyses with phylogenetic footprinting in eudicots and in Arabidopsis accessions, we identify a cis-regulatory module, Regulatory region of DUO1 (ROD1), which replicates the expression pattern of DUO1 in Arabidopsis (Arabidopsis thaliana). We show that ROD1 from the legume Medicago truncatula directs male germline-specific expression in Arabidopsis, demonstrating conservation of DUO1 regulation among eudicots. ROD1 contains several short conserved cis-regulatory elements, including three copies of the motif DNGTGGV, required for germline expression and tandem repeats of the motif YAACYGY, which enhance DUO1 transcription in a positive feedback loop. We conclude that a cis-regulatory module conserved in eudicots directs the spatial and temporal expression of the transcription factor DUO1 to specify male germline fate and sperm cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Células Germinativas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Secuencia de Bases , Huella de ADN , Ecotipo , Medicago/genética , Motivos de Nucleótidos/genética , Filogenia , Polen/genética , Eliminación de Secuencia/genética
4.
Genes Dev ; 24(11): 1081-5, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516193

RESUMEN

The established role of various small RNA pathways in the epigenetic regulation of gene expression in the dipolid sporophytic generation of flowering plants contrasts sharply with the lack of knowledge of their role in haploid gametophyte generation. Several recent studies now uncover the operation of multiple small RNA pathways in male and female gametophytes and their essential roles in genome integrity, cell specification, and, most recently, sperm cell function, as described in the May 15, 2010, issue of Genes & Development by Ron and colleagues (pp. 1010-1021).


Asunto(s)
Epigénesis Genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , MicroARNs/metabolismo , Elementos Transponibles de ADN/fisiología , Polen/crecimiento & desarrollo , Polen/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo
5.
Plant J ; 87(2): 188-201, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27121542

RESUMEN

In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin-celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6-1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)-dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6-1 during male meiosis and pollen mitosis I using fluorescent MT-markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6-1 mutants as a valuable tool for the investigation of augmin-dependent MT nucleation and dynamics in plant cells.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Microtúbulos/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Polen/genética , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Meiosis/fisiología , Mitosis/fisiología , Polen/fisiología , Reproducción/genética , Reproducción/fisiología
6.
Plant Cell ; 26(5): 2098-2113, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876252

RESUMEN

The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif-containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.

7.
Plant Cell ; 26(8): 3314-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122154

RESUMEN

Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ácido Glucurónico/metabolismo , Glucuronosiltransferasa/fisiología , Polen/fisiología , Esfingolípidos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Silenciador del Gen , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Polen/enzimología , Polen/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/genética , Nicotiana/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(51): 18393-8, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489100

RESUMEN

Angiosperm reproduction is characterized by alternate diploid sporophytic and haploid gametophytic generations. Gametogenesis shares similarities with that of animals except for the formation of the gametophyte, whereby haploid cells undergo several rounds of postmeiotic mitosis to form gametes and the accessory cells required for successful reproduction. The mechanisms regulating gametophyte development in angiosperms are incompletely understood. Here, we show that the nucleoporin Nup88-homolog MOS7 (Modifier of Snc1,7) plays a crucial role in mitosis during both male and female gametophyte formation in Arabidopsis thaliana. Using a mutagenesis screen, we identify the mos7-5 mutant allele, which causes ovule and pollen abortion in MOS7/mos7-5 heterozygous plants, and preglobular stage embryonic lethality in homozygous mos7-5 seeds. During interphase, we show that MOS7 is localized to the nuclear membrane but, like many nucleoporins, is associated with the spindle apparatus during mitosis. We detect interactions between MOS7 and several nucleoporins known to control spindle dynamics, and find that in pollen from MOS7/mos7-5 heterozygotes, abortion is accompanied by a failure of spindle formation, cell fate specification, and phragmoplast activity. Most intriguingly, we show that following gamete formation by MOS7/mos7-5 heterozygous spores, inheritance of either the MOS7 or the mos7-5 allele by a given gamete does not correlate with its respective survival or abortion. Instead, we suggest a model whereby MOS7, which is highly expressed in the Pollen- and Megaspore Mother Cells, enacts a dosage-limiting effect on the gametes to enable their progression through subsequent mitoses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/embriología , Células Germinativas/crecimiento & desarrollo , Mitosis/fisiología , Semillas/crecimiento & desarrollo , Alelos , Arabidopsis/genética , Microtúbulos/fisiología , Mutación
9.
Pak J Pharm Sci ; 30(2): 439-448, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28649068

RESUMEN

In order to express multisubunit proteins, or to manipulate metabolic pathways in plants it is essential to be able to efficiently express multiple proteins within the same plant cell. To increase the efficiency of multi-protein expression, we demonstrate the use of the Golgi localized Kex2 protease activity in tobacco to process a large polyprotein precursor consisting of four individual protein domains into its individual protein constituents. Four genes encoding enzymes involved in the biosynthesis of S. pneumoniae type 2 polysaccharide were assembled into a single expression cassette as a large polyprotein driven by a single cauliflower mosaic virus (CaMV) 35S promoter. Each of the individual protein domains were separated by three sequential Kex2 protease digestion sites. At the N-terminus a Pr1b signal peptide was incorporated for efficient targeting of the polyprotein to the apoplast. Each individual protein domain was tagged with its own immuno-tag. The construct was used for the transformation of Nicotiana tabacum and stable lines were selected. All four processed proteins could be immunologically detected in protein extracts using Western blotting indicating correct expression and Kex2 processing. Utilisation of the Kex2 protease system represents an efficient way of expressing multiple proteins in the same plant. This method simplifies the transformation procedures, and presents a method for expression of multiple proteins within the same plant.


Asunto(s)
Nicotiana/enzimología , Nicotiana/genética , Péptido Hidrolasas/metabolismo , Poliproteínas/biosíntesis , Polisacáridos/biosíntesis , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética , Expresión Génica/inmunología , Poliproteínas/genética , Regiones Promotoras Genéticas/genética , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Señales de Clasificación de Proteína , Transformación Bacteriana
10.
New Phytol ; 206(1): 255-267, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25442716

RESUMEN

Pollen germination may occur via the so-called germination pores or directly through the pollen wall at the site of contact with the stigma. In this study, we addressed what processes take place during pollen hydration (i.e. before tube emergence), in a species with extra-poral pollen germination, Arabidopsis thaliana. A T-DNA mutant population was screened by segregation distortion analysis. Histological and electron microscopy techniques were applied to examine the wild-type and mutant phenotypes. Within 1 h of the start of pollen hydration, an intine-like structure consisting of cellulose, callose and at least partly de-esterified pectin was formed at the pollen wall. Subsequently, this 'germination plaque' gradually extended and opened up to provide passage for the cytoplasm into the emerging pollen tube. BURSTING POLLEN (BUP) was identified as a gene essential for the correct organization of this plaque and the tip of the pollen tube. BUP encodes a novel Golgi-located glycosyltransferase related to the glycosyltransferase 4 (GT4) subfamily which is conserved throughout the plant kingdom. Extra-poral pollen germination involves the development of a germination plaque and BUP defines the correct plastic-elastic properties of this plaque and the pollen tube tip by affecting pectin synthesis or delivery.


Asunto(s)
Arabidopsis/genética , Pectinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Citoplasma/metabolismo , Glucanos/metabolismo , Mutagénesis Insercional , Polen/genética , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Polinización
11.
BMC Genomics ; 15: 1031, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25431190

RESUMEN

BACKGROUND: Ecological studies routinely show genotype-genotype interactions between insects and their parasites. The mechanisms behind these interactions are not clearly understood. Using the bumblebee Bombus terrestris/trypanosome Crithidia bombi model system (two bumblebee colonies by two Crithidia strains), we have carried out a transcriptome-wide analysis of gene expression and alternative splicing in bees during C. bombi infection. We have performed four analyses, 1) comparing gene expression in infected and non-infected bees 24 hours after infection by Crithidia bombi, 2) comparing expression at 24 and 48 hours after C. bombi infection, 3) determining the differential gene expression associated with the bumblebee-Crithidia genotype-genotype interaction at 24 hours after infection and 4) determining the alternative splicing associated with the bumblebee-Crithidia genotype-genotype interaction at 24 hours post infection. RESULTS: We found a large number of genes differentially regulated related to numerous canonical immune pathways. These genes include receptors, signaling pathways and effectors. We discovered a possible interaction between the peritrophic membrane and the insect immune system in defense against Crithidia. Most interestingly, we found differential expression and alternative splicing of immunoglobulin related genes (Dscam and Twitchin) are associated with the genotype-genotype interactions of the given bumblebee colony and Crithidia strain. CONCLUSIONS: In this paper we have shown that the expression and alternative splicing of immune genes is associated with specific interactions between different host and parasite genotypes in this bumblebee/trypanosome model.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Inmunidad/genética , Insectos/genética , Insectos/inmunología , Animales , Análisis por Conglomerados , Biología Computacional , Crithidia , Perfilación de la Expresión Génica , Genotipo , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Insectos/parasitología , Serina Proteasas/genética , Factores de Tiempo
12.
Plant Cell ; 23(2): 534-49, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21285328

RESUMEN

The male germline in flowering plants arises through asymmetric division of a haploid microspore. The resulting germ cell undergoes mitotic division and specialization to produce the two sperm cells required for double fertilization. The male germline-specific R2R3 MYB transcription factor DUO1 POLLEN1 (DUO1) plays an essential role in sperm cell specification by activating a germline-specific differentiation program. Here, we show that ectopic expression of DUO1 upregulates a significant number (~63) of germline-specific or enriched genes, including those required for fertilization. We validated 14 previously unknown DUO1 target genes by demonstrating DUO1-dependent promoter activity in the male germline. DUO1 is shown to directly regulate its target promoters through binding to canonical MYB sites, suggesting that the DUO1 target genes validated thus far are likely to be direct targets. This work advances knowledge of the DUO1 regulon that encompasses genes with a range of cellular functions, including transcription, protein fate, signaling, and transport. Thus, the DUO1 regulon has a major role in shaping the germline transcriptome and functions to commit progenitor germ cells to sperm cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Polen/crecimiento & desarrollo , Reproducción , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Regulón , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Factores de Transcripción/genética
13.
Plant Cell ; 23(4): 1608-24, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21521697

RESUMEN

In plant cells, mitochondria and plastids contain their own genomes derived from the ancestral bacteria endosymbiont. Despite their limited genetic capacity, these multicopy organelle genomes account for a substantial fraction of total cellular DNA, raising the question of whether organelle DNA quantity is controlled spatially or temporally. In this study, we genetically dissected the organelle DNA decrease in pollen, a phenomenon that appears to be common in most angiosperm species. By staining mature pollen grains with fluorescent DNA dye, we screened Arabidopsis thaliana for mutants in which extrachromosomal DNAs had accumulated. Such a recessive mutant, termed defective in pollen organelle DNA degradation1 (dpd1), showing elevated levels of DNAs in both plastids and mitochondria, was isolated and characterized. DPD1 encodes a protein belonging to the exonuclease family, whose homologs appear to be found in angiosperms. Indeed, DPD1 has Mg²âº-dependent exonuclease activity when expressed as a fusion protein and when assayed in vitro and is highly active in developing pollen. Consistent with the dpd phenotype, DPD1 is dual-targeted to plastids and mitochondria. Therefore, we provide evidence of active organelle DNA degradation in the angiosperm male gametophyte, primarily independent of maternal inheritance; the biological function of organellar DNA degradation in pollen is currently unclear.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ADN de Plantas/metabolismo , Exonucleasas/metabolismo , Exorribonucleasas/metabolismo , Magnesio/metabolismo , Orgánulos/genética , Polen/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Clonación Molecular , Secuencia Conservada/genética , ADN de Cloroplastos/metabolismo , ADN Mitocondrial/metabolismo , Exorribonucleasas/genética , Genes de Plantas/genética , Prueba de Complementación Genética , Germinación , Patrón de Herencia/genética , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Mitocondrias/metabolismo , Proteínas Mutantes/aislamiento & purificación , Mutación/genética , Especificidad de Órganos , Fenotipo , Plastidios/metabolismo , Polen/citología , Polen/metabolismo , Polen/ultraestructura , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Reproducción
14.
Plant Cell ; 23(1): 94-110, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21278126

RESUMEN

The phospholipase A(2) (PLA(2)) superfamily of lipolytic enzymes is involved in a number of essential biological processes, such as inflammation, development, host defense, and signal transduction. Despite the proven involvement of plant PLA(2)s in many biological functions, including senescence, wounding, elicitor and stress responses, and pathogen defense, relatively little is known about plant PLA(2)s, and their genes essentially remain uncharacterized. We characterized three of four Arabidopsis thaliana PLA(2) paralogs (PLA(2)-ß, -γ, and -δ) and found that they (1) are expressed during pollen development, (2) localize to the endoplasmic reticulum and/or Golgi, and (3) play critical roles in pollen development and germination and tube growth. The suppression of PLA(2) using the RNA interference approach resulted in pollen lethality. The inhibition of pollen germination by pharmacological PLA(2) inhibitors was rescued by a lipid signal molecule, lysophosphatidyl ethanolamine. Based on these results, we propose that plant reproduction, in particular, male gametophyte development, requires the activities of the lipid-modifying PLA(2)s that are conserved in other organisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Germinación , Fosfolipasas A2/metabolismo , Polen/crecimiento & desarrollo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/enzimología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Aparato de Golgi/enzimología , Lisofosfolípidos/metabolismo , Mutación , Fosfolipasas A2/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Polen/genética , Polen/ultraestructura , Interferencia de ARN , ARN de Planta/genética
15.
Nature ; 455(7216): 1134-7, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18948957

RESUMEN

Flowering plants possess a unique reproductive strategy, involving double fertilization by twin sperm cells. Unlike animal germ lines, the male germ cell lineage in plants only forms after meiosis and involves asymmetric division of haploid microspores, to produce a large, non-germline vegetative cell and a germ cell that undergoes one further division to produce the twin sperm cells. Although this switch in cell cycle control is critical for sperm cell production and delivery, the underlying molecular mechanisms are unknown. Here we identify a novel F-box protein of Arabidopsis thaliana, designated FBL17 (F-box-like 17), that enables this switch by targeting the degradation of cyclin-dependent kinase A;1 inhibitors specifically in male germ cells. We show that FBL17 is transiently expressed in the male germ line after asymmetric division and forms an SKP1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex (SCF(FBL17)) that targets the cyclin-dependent kinase inhibitors KRP6 and KRP7 for proteasome-dependent degradation. Accordingly, the loss of FBL17 function leads to the stabilization of KRP6 and inhibition of germ cell cycle progression. Our results identify SCF(FBL17) as an essential male germ cell proliferation complex that promotes twin sperm cell production and double fertilization in flowering plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas F-Box/metabolismo , Polen/citología , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular/genética , Proliferación Celular , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo
16.
Plant J ; 72(2): 308-19, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22709276

RESUMEN

The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO-IN-ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP-tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast-associated kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, as TIO-interacting proteins and determine TIO-Kinesin-12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin-12 subfamily members mainly through the C-terminal ARM repeat domain, but with a contribution from the N-terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citocinesis , Microtúbulos/metabolismo , Secuencias de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Modelos Biológicos , Mutación , Fenotipo , Polen/citología , Polen/enzimología , Polen/genética , Polen/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
18.
Plant Reprod ; 36(3): 243-254, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37022491

RESUMEN

KEY MESSAGE: The main features of generative cell morphogenesis, formation of a cytoplasmic projection and elongation of the GC body, operate through independent genetic pathways. Male gametogenesis in developing angiosperm pollen involves distinctive changes in cell morphogenesis. Re-shaping and elongation of the generative cell (GC) are linked to the formation of a GC cytoplasmic projection connected to the vegetative cell nucleus. Although genetic control of GC morphogenesis is unknown, we suspected the involvement of the germline-specific MYB transcription factor DUO POLLEN1 (DUO1). We used light and fluorescence microscopy to examine male germline development in pollen of wild-type Arabidopsis and in four allelic duo1 mutants expressing introduced cell markers. Our analysis shows that the undivided GC in duo1 pollen forms a cytoplasmic projection, but the cell body fails to elongate. In contrast GCs of cyclin-dependent kinase function mutants, which fail to divide like duo1 mutants, achieve normal morphogenesis. We conclude that DUO1 has an essential role in the elongation of the GC, but DUO1-independent pathways control the development of the GC cytoplasmic projection. The two main features of GC morphogenesis therefore operate through independently regulated genetic pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma de la Célula , Núcleo Celular/metabolismo , Polen
19.
Plant Reprod ; 36(3): 213-241, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36282332

RESUMEN

Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Reproducibilidad de los Resultados , Proteómica , Polen/genética , Polen/metabolismo , Transcriptoma , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Proc Natl Acad Sci U S A ; 106(17): 7257-62, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19359496

RESUMEN

The Retinoblastoma (Rb) protein is a conserved repressor of cell proliferation. In animals and plants, deregulation of Rb protein causes hyperproliferation and perturbs cell differentiation to various degrees. However, the primary developmental impact of the loss of Rb protein has remained unclear. In this study we investigated the direct consequences of Rb protein knockout in the Arabidopsis male germline using cytological and molecular markers. The Arabidopsis germ line derives from the unequal division of the microspore, producing a small germ cell and a large terminally differentiated vegetative cell. A single division of the germ cell produces the 2 sperm cells. We observed that the loss of Rb protein does not have a major impact on microspore division but causes limited hyperproliferation of the vegetative cell and, to a lesser degree, of the sperm cells. In addition, cell fate is perturbed in a fraction of Rb-defective vegetative cells. These defects are rescued by preventing cell proliferation arising from down-regulation of cyclin-dependent kinase A1. Our results indicate that hyperproliferation caused by the loss of Rb protein prevents or delays cell determination during plant male gametogenesis, providing further evidence for a direct link between fate determination and cell proliferation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Linaje de la Célula , Gametogénesis , Proteína de Retinoblastoma/metabolismo , Arabidopsis/genética , Proliferación Celular , Polen/citología , Polen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA