Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Int J Mol Sci ; 21(11)2020 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517283

RESUMEN

Chemosensory perception in insects involves a broad set of chemosensory proteins (CSPs) that identify the bouquet of chemical compounds present in the external environment and regulate specific behaviors. The current study is focused on the Spodoptera litura (Fabricius) chemosensory-related protein, SlitCSP3, a midgut-expressed CSP, which demonstrates differential gene expression upon different diet intake. There is an intriguing possibility that SlitCSP3 can perceive food-derived chemical signals and modulate insect feeding behavior. We predicted the three-dimensional structure of SlitCSP3 and subsequently performed an accelerated molecular dynamics (aMD) simulation of the best-modeled structure. SlitCSP3 structure has six α-helices arranged as a prism and a hydrophobic binding pocket predominated by leucine and isoleucine. We analyzed the interaction of selected host plant metabolites with the modeled structure of SlitCSP3. Out of two predicted binding pockets in SlitCSP3, the plant-derived defensive metabolites 2-b-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA), 6-Methoxy-2-benzoxazolinone (MBOA), and nicotine were found to interact preferably to the hydrophobic site 1, compared to site 2. The current study provides the potential role of CSPs in recognizing food-derived chemical signals, host-plant specialization, and adaptation to the varied ecosystem. Our work opens new perspectives in designing novel pest-management strategies. It can be further used in the development of CSP-based advanced biosensors.


Asunto(s)
Interacciones Huésped-Parásitos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Modelos Moleculares , Plantas/metabolismo , Plantas/parasitología , Spodoptera/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
3.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480404

RESUMEN

The use of enhanced sampling molecular dynamics simulations to facilitate the folding of proteins is a relatively new approach which has quickly gained momentum in recent years. Accelerated molecular dynamics (aMD) can elucidate the dynamic path from the unfolded state to the near-native state, "flattened" by introducing a non-negative boost to the potential. Alamethicin F30/3 (Alm F30/3), chosen in this study, belongs to the class of peptaibols that are 7-20 residue long, non-ribosomally synthesized, amphipathic molecules that show interesting membrane perturbing activity. The recent studies undertaken on the Alm molecules and their transmembrane channels have been reviewed. Three consecutive simulations of ~900 ns each were carried out where N-terminal folding could be observed within the first 100 ns, while C-terminal folding could only be achieved almost after 800 ns. It took ~1 µs to attain the near-native conformation with stronger potential boost which may take several µs worth of classical MD to produce the same results. The Alm F30/3 hexamer channel was also simulated in an E. coli mimicking membrane under an external electric field that correlates with previous experiments. It can be concluded that aMD simulation techniques are suited to elucidate peptaibol structures and to understand their folding dynamics.


Asunto(s)
Simulación de Dinámica Molecular , Peptaiboles/química , Peptaiboles/metabolismo , Pliegue de Proteína , Membrana Dobles de Lípidos/química , Análisis de Componente Principal , Electricidad Estática , Termodinámica , Agua/química
4.
Molecules ; 24(2)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669493

RESUMEN

Peptaibols are a special class of fungal peptides with an acetylated N-terminus and a C-terminal 1,2-amino alcohol along with non-standard amino acid residues. New peptaibols named tripleurins were recently identified from a strain of the filamentous fungal species Trichoderma pleuroti, which is known to cause green mould disease on cultivated oyster mushrooms. To understand the mode of action of these peptaibols, the three-dimensional structure of tripleurin (TPN) XIIc, an 18-mer peptide, was elucidated using an enhanced sampling method, accelerated MD, in water and chloroform solvents. Non-standard residues were parameterized by the Restrained Electrostatic Potential (RESP) charge fitting method. The dihedral distribution indicated towards a right-handed helical formation for TPN XIIc in both solvents. Dihedral angle based principal component analysis revealed a propensity for a slightly bent, helical folded conformation in water solvent, while two distinct conformations were revealed in chloroform: One that folds into highly bent helical structure that resembles a beta-hairpin and another with an almost straight peptide backbone appearing as a rare energy barrier crossing event. The hinge-like movement of the terminals was also observed and is speculated to be functionally relevant. The convergence and efficient sampling is addressed using Cartesian PCA and Kullback-Leibler divergence methods.


Asunto(s)
Simulación de Dinámica Molecular , Peptaiboles/química , Pliegue de Proteína , Solventes/química , Trichoderma/química , Secuencia de Aminoácidos , Aminoácidos/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Análisis de Componente Principal , Estructura Secundaria de Proteína , Electricidad Estática , Termodinámica , Agua/química
5.
J Cell Biochem ; 118(9): 2950-2957, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28247939

RESUMEN

Fluoroquinolones are among the most important classes of highly effective antibacterial drugs, exhibiting wide range of activity to cure infectious diseases. Ofloxacin is second generation fluoroquinolone approved by FDA for the treatment of tuberculosis by selectively inhibiting DNA gyrase. However, the emergence of drug resistance owing to mutations in DNA gyrase poses intimidating challenge for the effective therapy of this drug. The double mutants GyrAA90V GyrBD500N and GyrAA90V GyrBT539N are reported to be implicated in conferring higher levels of OFX resistance. The present study was designed to unravel the molecular principles behind development of resistance by the bug against fluoroquinolones. Our results highlighted that polar interactions play critical role in the development of drug resistance and highlight the significant correlation between the free energy calculations predicted by MM-PBSA and stability of the ligand-bound complexes. Modifications at the OFX binding pocket due to amino acid substitution leads to fewer hydrogen bonds in mutants DNA gyrase-OFX complex, which determined the low susceptibility of the ligand in inhibiting the mutant protein. This study provides a structural rationale to the mutation-based resistance to ofloxacin and will pave way for development potent fluoroquinolone-based resistant-defiant drugs. J. Cell. Biochem. 118: 2950-2957, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Bacterianas , Girasa de ADN , Farmacorresistencia Bacteriana/genética , Mutación Missense , Mycobacterium tuberculosis , Ofloxacino , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Girasa de ADN/genética , Girasa de ADN/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética
6.
J Recept Signal Transduct Res ; 37(4): 391-400, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28264627

RESUMEN

The apoptotic mechanism is regulated by the BCL-2 family of proteins, such as BCL-2 or Bcl-xL, which block apoptosis while Bad, Bak, Bax, Bid, Bim or Hrk induce apoptosis. The overexpression of BCL-2 was found to be related to the progression of cancer and also providing resistance towards chemotherapeutic treatments. In the present study, we found that all polyphenols (apigenin, fisetin, galangin and luteolin) bind to the hydrophobic groove of BCL-2 and the interaction is stable throughout MD simulation run. Luteolin was found to bind with highest negative binding energy and thus, claimed highest potency towards BCL-2 inhibition followed by fisetin. The hydrophobic interactions were found to be critical for stable complex formation as revealed by the vdW energy and ligplot analysis. Finally, on the basis of data obtained during the study, it can be concluded that these polyphenols have the potential to be used as lead molecules for BCL-2 inhibition.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Polifenoles/química , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/química , Apigenina/química , Apigenina/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Flavonoides/química , Flavonoides/farmacología , Flavonoles , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Luteolina/química , Luteolina/farmacología , Polifenoles/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética
7.
Chem Biodivers ; 14(6)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28261948

RESUMEN

Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well-known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non-ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS-based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18-residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.


Asunto(s)
Agaricales/crecimiento & desarrollo , Peptaiboles/biosíntesis , Trichoderma/metabolismo , Agaricales/efectos de los fármacos , Agaricus , Genes Fúngicos , Genoma Fúngico , Inhibidores de Crecimiento , Micosis , Peptaiboles/genética , Peptaiboles/toxicidad , Pleurotus , Trichoderma/genética , Trichoderma/patogenicidad
8.
Indian J Biochem Biophys ; 52(2): 169-78, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26118129

RESUMEN

Chitinases are the hydrolytic enzymes which protect plants against pathogen attack. However, the precise role of chitinases in disease resistance has not been explored in wheat. In the present study, in silico approach, including secondary structure analysis, detailed signature pattern study, cis-acting regulatory elements survey, evolutionary trends and three-dimensional molecular modeling was used for different chitinase classes of wheat (Triticum aestivum). Homology modeling of class I, II, IV and 3 chitinase proteins was performed using the template crystal structure. The model structures were further refined by molecular mechanics methods using different tools, such as Procheck, ProSA and Verify3D. Secondary structure studies revealed greater percentage of residues forming a helix conformation with specific signature pattern, similar to casein kinase II phosphorylation site, amidation site, N-myristoylation (N-MYR) site and protein kinase C phoshorylation site. The expression profile suggested that wheat chitinase gene was highly expressed in cell culture and callus. We found that wheat chitinases showed more functional similarity with rice and barley. The results provide insight into the evolution of the chitinase family, constituting a diverse array of pathogenesis-related proteins. The study also provides insight into the possible binding sites of chitinase proteins and may further enhance our knowledge of fungal resistance mechanism in plants.


Asunto(s)
Quitinasas/genética , Triticum/genética , Secuencia de Aminoácidos , Quitinasas/química , Genes de Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Triticum/clasificación , Triticum/enzimología
9.
BMC Genomics ; 15 Suppl 9: S3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25521775

RESUMEN

BACKGROUND: A number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the ß-unit of tubulin close to the interface with the α unit. We modelled the human tubulin ß unit (chain D) protein and performed docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as the template and their activities were predicted. RESULTS: The G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI (predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI. CONCLUSIONS: The study provides an insight into the crucial structural requirements and the necessary chemical substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer.


Asunto(s)
Indoles/química , Indoles/farmacología , Simulación de Dinámica Molecular , Multimerización de Proteína/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Tubulina (Proteína)/química , Apoptosis/efectos de los fármacos , Sitios de Unión , Colchicina/metabolismo , Descubrimiento de Drogas , Humanos , Indoles/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacología
11.
BMC Genomics ; 14 Suppl 8: S10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24564425

RESUMEN

BACKGROUND: Development of a cancerous cell takes place when it ceases to respond to growth-inhibiting signals and multiplies uncontrollably and can detach and move to other parts of the body; the process called as metastasis. A particular set of cysteine proteases are very active during cancer metastasis, Cathepsins being one of them. They are involved in tumor growth and malignancy and have also been reported to be overexpressed in tumor cell lines. In the present study, a combinatorial approach comprising three-dimensional quantitative structure-activity relationship (3D QSAR), ligand-based pharmacophore modelling and search followed by cathepsin L structure-based high throughput screening was carried out using an initial set of 28 congeneric thiosemicarbazone derivatives as cathepsin L inhibitors. A 3D QSAR was derived using the alignment of a common thiosemicarbazone substructure. Essential structural features responsible for biological activity were taken into account for development of a pharmacophore model based on 29 congeneric thiosemicarbazone derivatives. This model was used to carry out an exhaustive search on a large dataset of natural compounds. A further cathepsin L structure-based screen identified two top scoring compounds as potent anti-cancer leads. RESULTS: The generated 3D QSAR model showed statistically significant results with an r(2) value of 0.8267, cross-validated correlation coefficient q(2) of 0.7232, and a pred_r(2) (r(2) value for test set) of 0.7460. Apart from these, a high F test value of 30.2078 suggested low probability of the model's failure. The pharmacophoric hypothesis chosen for searching the natural compound libraries was identified as DDHRR, where two Ds denote 2 hydrogen donors, H represents a hydrophobic group and two Rs represent aromatic rings, all of which are essential for the biological activity. We report two potential drug leads ZINC08764437 (NFP) and ZINC03846634 (APQ) obtained after a combined approach of pharmacophore-based search and structure-based virtual screen. These two compounds displayed extra precision docking scores of -7.972908 and -7.575686 respectively suggesting considerable binding affinity for cathepsin L. High activity values of 5.72 and 5.75 predicted using the 3D QSAR model further substantiated the inhibitory potential of these identified leads. CONCLUSION: The present study attempts to correlate the structural features of thiosemicarbazone group with their biological activity by development of a robust 3D QSAR model. Being statistically valid, this model provides near accurate values of the activities predicted for the congeneric set on which it is based. These predicted activities are good for the test set compounds making it indeed a statistically sound 3D QSAR model. The identified pharmacophore model DDHRR.8 comprised of all the essential features required to interact with the catalytic triad of cathepsin L. A search for natural compounds based on this pharmacophore followed by docking studies further screened out two top scoring candidates: NFP and AFQ. The high binding affinity and presence of essential structural features in these two compounds make them ideal for consideration as natural anti-tumoral agents. Activity prediction using 3D QSAR model further validated their potential as worthy drug candidates against cathepsin L for treatment of cancer.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Fenilendiaminas/química , Quinolonas/química , Tiosemicarbazonas/química , Algoritmos , Sitios de Unión , Catepsina L/química , Humanos , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Sarcosina/análogos & derivados , Sarcosina/química , Sarcosina/farmacología
12.
ACS Omega ; 8(33): 30432-30441, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636942

RESUMEN

Ubiquitination is a crucial type of protein modification which helps to control substrate degradation and maintain cell homeostasis. Recent studies suggest that ubiquitination and deubiquitination are involved in regulating metabolic reprogramming in cancer cells and maintaining cancer stem cells. Uba1, a crucial protein in the ubiquitination cascade, can be targeted to develop effective inhibitors for cancer treatment. In previous work, we showed that myricetin (Myr) acts as a potential human Uba1 (hUba1) inhibitor. In this study, we have utilized computational modeling techniques to attempt to illustrate the mechanism of action of Myr. Through extra-precision docking, we confirmed that Myr binds to the adenosine triphosphate (ATP)-binding site of hUba1 (referred to as hotspot 1) with the highest binding affinity. The dynamics of this interaction revealed that hUba1 undergoes a conformational shift from open to closed upon binding of Myr. Myr also migrates outward to interact with the crossover loop simultaneously as the rotational shift of the ubiquitin fold domain (UFD) takes place, thereby blocking access to the ubiquitin binding interface of hUba1 and the crossover loop. The outward migration also explains the reversible nature of Myr binding to hUba1 in previous experiments. We hypothesize that Myr acts as an inhibitor of Uba1∼Ub thioester bond formation by causing a large domain shift toward a closed conformation. Few other analogues of Myr containing the same flavone skeleton showed promising docking scores against hUba1 and could be considered for further validation. We propose that Myr and some of its analogues reported in this study may be promising candidates for developing effective Uba1 inhibitors for cancer treatment.

13.
Comput Struct Biotechnol J ; 21: 1860-1873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915379

RESUMEN

Integrated disease management and plant protection have been discussed with much fervor in the past decade due to the rising environmental concerns of using industrially produced pesticides. Members of the genus Trichoderma are a subject of considerable research today due to their several properties as biocontrol agents. In our study, the peptaibol production of Trichoderma longibrachiatum SZMC 1775, T. longibrachiatum f. bissettii SZMC 12546, T. reesei SZMC 22616, T. reesei SZMC 22614, T. saturnisporum SZMC 22606 and T. effusum SZMC 22611 were investigated to elucidate structure-activity relationships (SARs) between the properties of peptaibols and their 3D structures. The effects of peptaibol mixtures obtained from every Trichoderma strain were examined against nine commonly known bacteria. The lowest minimum inhibitory concentrations (MIC, mg ml-1) were exerted by T. longibrachiatum f. bissettii SZMC 12546 against Gram-positive bacteria, which was also able to inhibit the plant pathogenic Gram-negative Rhizobium radiobacter. Accelerated molecular dynamics (aMD) simulations were performed in aqueous solvent to explore the folding dynamics of 12 selected peptaibol sequences. The most characteristic difference between the peptaibols from group A and B relies in the 'Gly-Leu-Aib-Pro' and 'Gly-Aib-Aib-Pro' motifs ('Aib' stands for α-aminoisobutyric acid), which imparted a significant effect on the folding dynamics in water and might be correlated with their expressed bioactivity. In our aMD simulation experiments, Group A peptaibols showed more restricted folding dynamics with well-folded helical conformations as the most stable representative structures. This structural stability and dynamics may contribute to their bioactivity against the selected bacterial species.

14.
Life (Basel) ; 13(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38137889

RESUMEN

We previously reported on a novel peptaibol, named Tripleurin XIIc (TPN), an 18-residue long sequence produced by the fungus Trichoderma pleuroti. We elucidated its 3D structure via classical and accelerated molecular dynamics simulation (aMD) methods and reported the folding dynamics of TPN in water and chloroform solvents. Peptaibols, in general, are insoluble in water, as they are amphipathic and may prefer hydrophobic environments like transmembrane regions. In this study, we attempted to use aMD simulations to model an all-atom bacterial membrane system while placing a TPN molecule in its vicinity. The results highlighted that TPN was able to introduce some disorder into the membrane and caused lipid clustering. It could also enter the transmembrane region from the water-bilayer interface. The structural dynamics of TPN in the transmembrane region revealed a single energetically stable conformation similar to the one obtained from water and chloroform solvent simulations reported by us previously. However, this linear structure was found to be at the local energy minimum (stable) in water but at a metastable intermediate state (higher energy) in chloroform. Therefore, it could be said that the water solvent can be successfully used for folding simulations of peptaibols.

15.
Front Bioeng Biotechnol ; 11: 1189640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662429

RESUMEN

Genes involved in mycoremediation were identified by comparative genomics analysis in 10 armillarioid species and selected groups of white-rot Basidiomycota (14) and soft-rot Ascomycota (12) species to confine the distinctive bioremediation capabilities of the armillarioids. The genomes were explored using phylogenetic principal component analysis (pPCA), searching for genes already documented in a biocatalysis/biodegradation database. The results underlined a distinct, increased potential of aromatics-degrading genes/enzymes in armillarioids, with particular emphasis on a high copy number and diverse spectrum of benzoate 4-monooxygenase [EC:1.14.14.92] homologs. In addition, other enzymes involved in the degradation of various monocyclic aromatics were more abundant in the armillarioids than in the other white-rot basidiomycetes, and enzymes involved in the degradation of polycyclic aromatic hydrocarbons (PAHs) were more prevailing in armillarioids and other white-rot species than in soft-rot Ascomycetes. Transcriptome profiling of A. ostoyae and A. borealis isolates confirmed that several genes involved in the degradation of benzoates and other monocyclic aromatics were distinctively expressed in the wood-invading fungal mycelia. Data were consistent with armillarioid species offering a more powerful potential in degrading aromatics. Our results provide a reliable, practical solution for screening the likely fungal candidates for their full biodegradation potential, applicability, and possible specialization based on their genomics data.

16.
RSC Adv ; 11(14): 8264-8276, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35423322

RESUMEN

The green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) and some of its analogs potently inhibit the ubiquitin-activating enzyme Uba1. In an effort to understand the possible molecular basis of inhibitory activity of EGCG, we conducted a molecular docking and molecular dynamics simulation study. We found that EGCG and its two selected analogs, (-)-epicatechin-3-gallate (ECG) and (-)-epigallocatechin (EGC), bind favorably at two likely hot spots for small-molecule ligand binding on human Uba1. The compounds bind with energetics that mirror their experimental potency for inhibition of Uba1∼ubiquitin thioester formation. The binding of EGCG, ECG, and EGC at one of the hot spots, in particular, recapitulates the rank order of potency determined experimentally and suggests a possible mechanism for inhibition. A hinge-like conformational change of the second catalytic cysteine domain and the opposing ubiquitin-fold domain observed during accelerated molecular dynamics simulations of the EGCG-bound Uba1 complex that results in disruption of the ubiquitin-binding interfaces could explain the compounds' inhibitory activity. These results shed light on the possible molecular mechanism of EGCG and related catechins in the inhibition of Uba1.

18.
PLoS One ; 15(11): e0241679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253167

RESUMEN

Plant defensins possess diverse biological functions that include antifungal and antibacterial activities and α-amylase and trypsin inhibitory properties. Two mutations, G9R and V39R, were confirmed to increase the antifungal activity of Raphanus sativus antifungal protein 2 (RsAFP2). Accelerated Molecular Dynamics (aMD) were carried out to examine the conformational changes present in these RsAFP2 mutants, and its two closest homologs compared to the wild-type protein. Specifically, the root mean square fluctuation values for the eight cysteine amino acids involved in the four disulfide bonds were low in the V39R mutant compared to the wild-type. Additionally, analysis of the free energy change revealed that G9R and V39R mutations exert a neutral and stabilizing effect on RsAFP2 conformation, and this is supported by the observed lower total energy of mutants compared to the wild-type, suggesting that enhanced stability of the mutants. However, MD simulations to a longer time scale would aid in capturing more conformational state of the wild-type and mutants defensin protein. Furthermore, the aMD simulations on fungal mimic membranes with RsAFP2 and its mutants and homologs showed that the mutant proteins caused higher deformation and water diffusion than the native RsAFP2, especially the V39R mutant. The mutant variants seem to interact by specifically targeting the POPC and POPI lipids amongst others. This work highlights the stabilizing effect of mutations at the 9th and 39th positions of RsAFP2 and their increased membrane deformation activity.


Asunto(s)
Defensinas/química , Defensinas/genética , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Deuterio/química , Datos de Secuencia Molecular , Mutación/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
19.
Int J Biol Macromol ; 140: 415-422, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421177

RESUMEN

The most generally spread neurotransmitter acetylcholine (Ach) is used as a chemical messenger assisting in conveying signals transversely through the nerve synapse. Herein, two enzymes acetylcholinesterase and choline oxidase were covalently immobilized over the gold nanoparticles (AuNPs) embedded graphene oxide (GO; 2D carbon material) nanocomposite modified ITO coated glass plate. The synergetic and unique properties of AuNPs and GO present in nanocomposite are used to detect the ultra-small concentration of analyte, Ach. The prepared nanocomposites were characterized using different techniques i.e. TEM, XRD, SEM, FTIR, UV-Vis and Raman Spectroscopy. All the electrochemical measurements were performed using 3 electrodes integrated electrochemical system by introducing Ach through varying its concentration from 100 pM to 1000 nM. Cyclic voltammetry curves for different concentrations of Ach indicate the facile charge transfer process over the working electrode. Square wave voltammetry curves indicate the good sensing measurements of the modified electrode at the fixed potential. The limit of detection was found to be as low as 100 pM. In addition to these, selectivity of the electrode towards Ach molecule was confirmed by measuring the response towards other interfering agents. Besides this, the present nano interface is capable of detecting Ach in biological fluid such as serum.


Asunto(s)
Acetilcolina/aislamiento & purificación , Técnicas Biosensibles , Nanopartículas del Metal/química , Neurotransmisores/aislamiento & purificación , Acetilcolina/química , Acetilcolinesterasa/química , Oxidorreductasas de Alcohol/química , Técnicas Electroquímicas , Enzimas Inmovilizadas/química , Oro/química , Grafito/química , Humanos , Neurotransmisores/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
20.
Front Microbiol ; 10: 1434, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293557

RESUMEN

This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma, which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade (T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T. parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis, and T. orientale) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T. reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml-1 deterred the growth of A. thaliana. However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1, which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA