Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Immunity ; 51(1): 50-63.e5, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31174991

RESUMEN

Chronic inflammatory diseases are associated with altered hematopoiesis that could result in neutrophilia and anemia. Here we report that genetic or chemical manipulation of different inflammasome components altered the differentiation of hematopoietic stem and progenitor cells (HSPC) in zebrafish. Although the inflammasome was dispensable for the emergence of HSPC, it was intrinsically required for their myeloid differentiation. In addition, Gata1 transcript and protein amounts increased in inflammasome-deficient larvae, enforcing erythropoiesis and inhibiting myelopoiesis. This mechanism is evolutionarily conserved, since pharmacological inhibition of the inflammasome altered erythroid differentiation of human erythroleukemic K562 cells. In addition, caspase-1 inhibition rapidly upregulated GATA1 protein in mouse HSPC promoting their erythroid differentiation. Importantly, pharmacological inhibition of the inflammasome rescued zebrafish disease models of neutrophilic inflammation and anemia. These results indicate that the inflammasome plays a major role in the pathogenesis of neutrophilia and anemia of chronic diseases and reveal druggable targets for therapeutic interventions.


Asunto(s)
Anemia/inmunología , Enfermedades de los Peces/inmunología , Factor de Transcripción GATA1/metabolismo , Inflamasomas/metabolismo , Inflamación/inmunología , Neutrófilos/inmunología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Caspasa 1/genética , Caspasa 1/metabolismo , Diferenciación Celular , Células Eritroides/citología , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Humanos , Inflamasomas/genética , Células K562 , Masculino , Ratones , Ratones Endogámicos C57BL , Proteolisis , Proteínas de Pez Cebra/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279329

RESUMEN

Interest in the coronavirus disease 2019 (COVID-19) has progressively decreased lately, mainly due to the great effectivity of vaccines. Furthermore, no new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants able to circumvent the protection of these vaccines, while presenting high transmissibility and/or lethality, have appeared. However, long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. Nevertheless, although dysbiosis has also been reported in long COVID patients, mainly in the gut, little is known about the possible involvement of the microbiota in the development of this disease. Therefore, in this work, we aim to fill this gap in the knowledge by discussing and comparing the most relevant studies that have been published in this field up to this point. Hence, we discuss that the relevance of long COVID has probably been underestimated, and that the available data suggest that the microbiota could be playing a pivotal role on the pathogenesis of the disease. Further research to elucidate the involvement of the microbiota in long COVID will be essential to explore new therapeutic strategies based on manipulation of the microbiota.


Asunto(s)
COVID-19 , Microbiota , Vacunas , Humanos , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Disbiosis
3.
Proc Natl Acad Sci U S A ; 117(25): 14220-14230, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513741

RESUMEN

Because raising cAMP enhances 26S proteasome activity and the degradation of cell proteins, including the selective breakdown of misfolded proteins, we investigated whether agents that raise cGMP may also regulate protein degradation. Treating various cell lines with inhibitors of phosphodiesterase 5 or stimulators of soluble guanylyl cyclase rapidly enhanced multiple proteasome activities and cellular levels of ubiquitinated proteins by activating protein kinase G (PKG). PKG stimulated purified 26S proteasomes by phosphorylating a different 26S component than is modified by protein kinase A. In cells and cell extracts, raising cGMP also enhanced within minutes ubiquitin conjugation to cell proteins. Raising cGMP, like raising cAMP, stimulated the degradation of short-lived cell proteins, but unlike cAMP, also markedly increased proteasomal degradation of long-lived proteins (the bulk of cell proteins) without affecting lysosomal proteolysis. We also tested if raising cGMP, like cAMP, can promote the degradation of mutant proteins that cause neurodegenerative diseases. Treating zebrafish models of tauopathies or Huntington's disease with a PDE5 inhibitor reduced the levels of the mutant huntingtin and tau proteins, cell death, and the resulting morphological abnormalities. Thus, PKG rapidly activates cytosolic proteasomes, protein ubiquitination, and overall protein degradation, and agents that raise cGMP may help combat the progression of neurodegenerative diseases.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Animales , Animales Modificados Genéticamente , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Humanos , Fosforilación , Tauopatías , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Pez Cebra , Proteínas tau/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835535

RESUMEN

Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.


Asunto(s)
Microbiota , Virosis , Masculino , Femenino , Humanos , ARN Ribosómico 16S/genética , Genes de ARNr , Nasofaringe/microbiología , Microbiota/genética , Bacterias/genética , Envejecimiento , Virosis/genética
5.
Fish Shellfish Immunol ; 90: 215-222, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31039438

RESUMEN

The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.


Asunto(s)
Evolución Biológica , Proteínas de Peces/genética , Inmunidad Innata , Receptores Inmunológicos/genética , Pez Cebra/inmunología , Animales , Modelos Animales de Enfermedad , Evolución Molecular , Proteínas de Peces/metabolismo , Inmunidad Innata/genética , Modelos Animales , Receptores Inmunológicos/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
6.
PLoS Pathog ; 12(6): e1005699, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27351838

RESUMEN

TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Infecciones por Rhabdoviridae/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Autofagia/fisiología , Western Blotting , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Organismos Modificados Genéticamente , Reacción en Cadena de la Polimerasa , Rhabdoviridae/inmunología , Replicación Viral/fisiología , Pez Cebra
7.
J Immunol ; 197(4): 1379-88, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402697

RESUMEN

Although in mammals the TLR4/myeloid differentiation factor (MD)2/CD14 complex is responsible for the recognition of bacterial LPS, and it is known that the RP105/MD1 complex negatively regulates TLR4 signaling, the evolutionary history of LPS recognition remains enigmatic. Thus, zebrafish has orthologs of mammalian TLR4 (Tlr4a and Tlr4b), RP105, and MD1, but MD2 and CD14 seem to be absent from all fish genomes available to date. In addition, and to make the story more intriguing, zebrafish Tlr4a and Tlr4b do not recognize LPS, whereas the zebrafish Rp105/Md1 complex unexpectedly participates in the regulation of innate immunity and viral resistance. In this work, we report the identification of two novel splice variants of Md1, which are expressed at similar levels as full-length Md1 in the main immune-related organs of zebrafish and are highly induced upon viral infection. One of these splice variants, which is also expressed by mouse macrophages, lacks three conserved cysteine residues that have been shown to form disulfide bonds that are crucial for the three-dimensional structure of the MD-2-related lipid recognition domain of Md1. Functional studies in zebrafish demonstrate that this evolutionarily conserved splice variant shows higher antiviral activity than full-length Md1, but reduced proinflammatory activity, due to an impaired ability to activate the master regulator of inflammation, NF-κB. These results uncover a previously unappreciated evolutionarily conserved Md1 splice variant with important functions in the regulation of innate immunity and the antiviral response in zebrafish, and point to the need for additional functional studies in mammals on this little explored molecule.


Asunto(s)
Antígenos de Superficie/inmunología , Inmunidad Innata/inmunología , FN-kappa B/biosíntesis , Proteínas de Pez Cebra/inmunología , Animales , Secuencia de Bases , Western Blotting , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Isoformas de Proteínas/inmunología , Homología de Secuencia de Ácido Nucleico , Pez Cebra
8.
PLoS Biol ; 12(5): e1001855, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24802997

RESUMEN

TNFα overexpression has been associated with several chronic inflammatory diseases, including psoriasis, lichen planus, rheumatoid arthritis, and inflammatory bowel disease. Paradoxically, numerous studies have reported new-onset psoriasis and lichen planus following TNFα antagonist therapy. Here, we show that genetic inhibition of Tnfa and Tnfr2 in zebrafish results in the mobilization of neutrophils to the skin. Using combinations of fluorescent reporter transgenes, fluorescence microscopy, and flow cytometry, we identified the local production of dual oxidase 1 (Duox1)-derived H2O2 by Tnfa- and Tnfr2-deficient keratinocytes as a trigger for the activation of the master inflammation transcription factor NF-κB, which then promotes the induction of genes encoding pro-inflammatory molecules. In addition, pharmacological inhibition of Duox1 completely abrogated skin inflammation, placing Duox1-derived H2O2 upstream of this positive feedback inflammatory loop. Strikingly, DUOX1 was drastically induced in the skin lesions of psoriasis and lichen planus patients. These results reveal a crucial role for TNFα/TNFR2 axis in the protection of the skin against DUOX1-mediated oxidative stress and could establish new therapeutic targets for skin inflammatory disorders.


Asunto(s)
Liquen Plano/metabolismo , NADPH Oxidasas/metabolismo , Psoriasis/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Liquen Plano/genética , Liquen Plano/patología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Infiltración Neutrófila , Estrés Oxidativo , Psoriasis/genética , Psoriasis/patología , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal , Piel/patología , Factor de Necrosis Tumoral alfa/genética , Pez Cebra
9.
Front Cell Infect Microbiol ; 14: 1396263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881733

RESUMEN

Introduction: Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), manifests as persistent and often debilitating symptoms enduring well beyond the initial COVID-19 infection. This disease is especially worrying in children since it can seriously alter their development. Presently, a specific diagnostic test or definitive biomarker set for confirming long COVID is lacking, relying instead on the protracted presence of symptoms post-acute infection. Methods: We measured the levels of 13 biomarkers in 105 saliva samples (49 from children with long COVID and 56 controls), and the Pearson correlation coefficient was used to analyse the correlations between the levels of the different salivary biomarkers. Multivariate logistic regression analyses were performed to determine which of the 13 analysed salivary biomarkers were useful to discriminate between children with long COVID and controls, as well as between children with mild and severe long COVID symptoms. Results: Pediatric long COVID exhibited increased oxidant biomarkers and decreased antioxidant, immune response, and stress-related biomarkers. Correlation analyses unveiled distinct patterns between biomarkers in long COVID and controls. Notably, a multivariate logistic regression pinpointed TOS, ADA2, total proteins, and AOPP as pivotal variables, culminating in a remarkably accurate predictive model distinguishing long COVID from controls. Furthermore, total proteins and ADA1 were instrumental in discerning between mild and severe long COVID symptoms. Discussion: This research sheds light on the potential clinical utility of salivary biomarkers in diagnosing and categorizing the severity of pediatric long COVID. It also lays the groundwork for future investigations aimed at unravelling the prognostic value of these biomarkers in predicting the trajectory of long COVID in affected individuals.


Asunto(s)
Biomarcadores , COVID-19 , SARS-CoV-2 , Saliva , Índice de Severidad de la Enfermedad , Humanos , COVID-19/diagnóstico , Saliva/química , Saliva/virología , Biomarcadores/análisis , Niño , Femenino , Masculino , SARS-CoV-2/aislamiento & purificación , Preescolar , Adolescente
10.
Eur Respir Rev ; 32(169)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37558264

RESUMEN

Silicosis as an occupational lung disease has been present in our lives for centuries. Research studies have already developed and implemented many animal models to study the pathogenesis and molecular basis of the disease and enabled the search for treatments. As all experimental animal models used to date have their advantages and disadvantages, there is a continuous search for a better model, which will not only accelerate basic research, but also contribute to clinical aspects and drug development. We review here, for the first time, the main animal models developed to date to study silicosis and the unique advantages of the zebrafish model that make it an optimal complement to other models. Among the main advantages of zebrafish for modelling human diseases are its ease of husbandry, low maintenance cost, external fertilisation and development, its transparency from early life, and its amenability to chemical and genetic screening. We discuss the use of zebrafish as a model of silicosis, its similarities to other animal models and the characteristics of patients at molecular and clinical levels, and show the current state of the art of inflammatory and fibrotic zebrafish models that could be used in silicosis research.


Asunto(s)
Silicosis , Pez Cebra , Animales , Humanos , Modelos Animales de Enfermedad , Dióxido de Silicio , Silicosis/tratamiento farmacológico , Silicosis/genética , Silicosis/patología , Pez Cebra/genética
11.
Emerg Microbes Infect ; 12(1): e2165970, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36606725

RESUMEN

The development of novel culture-independent techniques of microbial identification has allowed a rapid progress in the knowledge of the nasopharyngeal microbiota and its role in health and disease. Thus, it has been demonstrated that the nasopharyngeal microbiota defends the host from invading pathogens that enter the body through the upper airways by participating in the modulation of innate and adaptive immune responses. The current COVID-19 pandemic has created an urgent need for fast-track research, especially to identify and characterize biomarkers to predict the disease severity and outcome. Since the nasopharyngeal microbiota diversity and composition could potentially be used as a prognosis biomarker for COVID-19 patients, which would pave the way for strategies aiming to reduce the disease severity by modifying such microbiota, dozens of research articles have already explored the possible associations between changes in the nasopharyngeal microbiota and the severity or outcome of COVID-19 patients. Unfortunately, results are controversial, as many studies with apparently similar experimental designs have reported contradictory data. Herein we put together, compare, and discuss all the relevant results on this issue reported to date. Even more interesting, we discuss in detail which are the limitations of these studies, that probably are the main sources of the high variability observed. Therefore, this work is useful not only for people interested in current knowledge about the relationship between the nasopharyngeal microbiota and COVID-19, but also for researchers who want to go further in this field while avoiding the limitations and variability of previous works.


Asunto(s)
COVID-19 , Microbiota , Humanos , Pandemias , Nasofaringe , Nariz
12.
Dev Comp Immunol ; 140: 104626, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587712

RESUMEN

One of the most studied defense mechanisms against invading pathogens, including viruses, are Toll-like receptors (TLRs). Among them, TLR3, TLR7, TLR8 and TLR9 detect different forms of viral nucleic acids in endosomal compartments, whereas TLR2 and TLR4 recognize viral structural and nonstructural proteins outside the cell. Although many different TLRs have been shown to be involved in SARS-CoV-2 infection and detection of different structural proteins, most studies have been performed in vitro and the results obtained are rather contradictory. In this study, we report using the unique advantages of the zebrafish model for in vivo imaging and gene editing that the S1 domain of the Spike protein from the Wuhan strain (S1WT) induced hyperinflammation in zebrafish larvae via a Tlr2/Myd88 signaling pathway and independently of interleukin-1ß production. In addition, S1WT also triggered emergency myelopoiesis, but in this case through a Tlr2/Myd88-independent signaling pathway. These results shed light on the mechanisms involved in the fish host responses to viral proteins.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 2 , Animales , COVID-19/inmunología , Factor 88 de Diferenciación Mieloide/genética , SARS-CoV-2 , Receptor Toll-Like 2/genética , Pez Cebra/genética
13.
Autophagy ; 19(5): 1582-1595, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36310368

RESUMEN

Much of our understanding of the intracellular regulation of macroautophagy/autophagy comes from in vitro studies. However, there remains a paucity of knowledge about how this process is regulated within different tissues during development, aging and disease in vivo. Because upregulation of autophagy is considered a promising therapeutic strategy for the treatment of diverse disorders, it is vital that we understand how this pathway functions in different tissues and this is best done by in vivo analysis. Similarly, to understand the role of autophagy in the pathogenesis of disease, it is important to study this process in the whole animal to investigate how tissue-specific changes in flux and cell-autonomous versus non-cell-autonomous effects alter disease progression. To this end, we have developed an inducible expression system to up- or downregulate autophagy in vivo, in zebrafish. We have used a modified version of the Gal4-UAS expression system to allow inducible expression of autophagy up- or downregulating transgenes by addition of tamoxifen. Using this inducible expression system, we have tested which transgenes robustly up- or downregulate autophagy and have validated these tools using Lc3-II blots and puncta analysis and disease rescue in a zebrafish model of neurodegeneration. These tools allow the temporal control of autophagy via the administration of tamoxifen and spatial control via tissue or cell-specific ERT2-Gal4 driver lines and will enable the investigation of how cell- or tissue-specific changes in autophagic flux affect processes such as aging, inflammation and neurodegeneration in vivo.Abbreviations: ANOVA: analysis of variance; Atg: autophagy related; Bcl2l11/Bim: BCL2 like 11; d.p.f.: days post-fertilization; Cryaa: crystallin, alpha a: DMSO: dimethyl sulfoxide; Elavl3: ELAV like neuron-specific RNA binding protein 3; ER: estrogen receptor; ERT2: modified ligand-binding domain of human ESR1/estrogen receptor α; Gal4: galactose-responsive transcription factor 4; GFP: green fluorescent protein; h.p.f.: hours post-fertilization; HSP: heat-shock protein; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; SD: standard deviation; SEM: standard error of the mean; UAS: upstream activating sequence; Ubb: ubiquitin b.


Asunto(s)
Autofagia , Pez Cebra , Animales , Humanos , Autofagia/genética , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Neuronas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Tamoxifeno
14.
Dev Comp Immunol ; 138: 104523, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055417

RESUMEN

Silica crystals are potent activators of the inflammasome that cause a fibrotic lung disease, called silicosis, with no effective treatment available. We report here that injection of silica crystals into the hindbrain ventricle of zebrafish embryos led to the initiation of local and systemic immune responses driven through both Toll-like receptors (TLR)- and inflammasome-dependent signaling pathways, followed by induction of pro-fibrotic markers. Genetic and pharmacological analysis revealed that the Nlrp3 inflammasome regulated silica crystal-induced inflammation and pyroptotic cell death, but not emergency myelopoiesis. In addition, Cxcl8a/Cxcr2-dependent recruitment of myeloid cells to silica crystals was required to promote emergency myelopoiesis and systemic inflammation. The zebrafish model of silicosis developed here shed light onto the molecular mechanisms involved in the activation of the immune system by silica crystals.


Asunto(s)
Inflamasomas , Silicosis , Animales , Inmunidad , Inflamasomas/metabolismo , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dióxido de Silicio/efectos adversos , Receptores Toll-Like/metabolismo , Pez Cebra/metabolismo
15.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36323404

RESUMEN

Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.


Asunto(s)
COVID-19 , Animales , Humanos , SARS-CoV-2 , Pez Cebra , Prueba de COVID-19
16.
Dev Comp Immunol ; 145: 104710, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37080369

RESUMEN

Fish are the most diverse and successful group of vertebrate animals, with about 30,000 species. The study of fish immunity is of great importance for understanding the evolution of vertebrate immunity, as they are the first animals to show both innate and adaptive immune responses. Although fish immunity is similar to that of mammals, there are obvious differences, such as their dependence of ambient temperature, their poor antibody response, and lack of antibody switching and lymph nodes. In addition, several important differences have also been found between the innate immune responses of fish and mammals. Among these, we will discuss in this review the high resistance of fish to the toxic effects of lipopolysaccharide (LPS) which can be explained by the absence of a Toll-like receptor 4 (Tlr4) ortholog in most fish species or by the inability of the Tlr4/Md2 (Myeloid differentiation 2) complex to recognize LPS, together with the presence of a negative regulator of the LPS signaling complex formed by the TLR-like molecule Rp105 (Radioprotective 105) and Md1. Taken together, these data support the idea that, although TLR4 and RP105 arose from a common ancestor to fish and tetrapods, the TLR4/MD2 receptor complex for LPS recognition arose after their divergence about 450 million years ago.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Peces , Inmunidad Innata , Antígeno 96 de los Linfocitos , Mamíferos
17.
Front Immunol ; 14: 1294766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077314

RESUMEN

Type I interferonopathies are a heterogenic group of rare diseases associated with an increase in type I interferon (IFN). The main challenge for the study of Type I interferonopathies is the lack of a well-founded animal model to better characterize the phenotype as well as to perform fast and large drug screenings to offer the best treatment options. In this study, we report the development of a transgenic zebrafish model of Type I interferonopathy overexpressing ifih1 carrying the mutation p.Arg742His (Tg(ifih1_mut)), corresponding to the human mutation p.Arg779His. RNA sequence analysis from Tg(ifih1_mut) larvae revealed a systemic inflammation and IFN signature upon a suboptimal poly I:C induction compared with wild-type larvae, confirming the phenotype observed in patients suffering from Type I interferonopathies. More interestingly, the phenotype was manifested in the zebrafish inflammation and Type I IFN reporters nfkb:eGFP and isg15:eGFP, respectively, making this zebrafish model suitable for future high-throughput chemical screening (HTS). Using the unique advantages of the zebrafish model for gene editing, we have generated Tg(ifih1_mut) knocked down for mavs and ikbke, which completely abrogated the Poly I:C induction and activation of the GFP of the reporters. Finally, we used an FDA-approved drug, Baricitinib (Jak1/Jak2 inhibitor), which was able to reduce the inflammation and the ISG expression. Our results demonstrate the potential of this model to further understand AGS pathological mechanisms and to identify novel therapeutic drugs by HTS.


Asunto(s)
Interferón Tipo I , Pez Cebra , Animales , Humanos , Inflamación/genética , Interferón Tipo I/genética , Poli I , Pez Cebra/genética , Helicasa Inducida por Interferón IFIH1
18.
EMBO Mol Med ; 15(10): e18142, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37675820

RESUMEN

Chronic inflammatory diseases are associated with hematopoietic lineage bias, including neutrophilia and anemia. We have recently identified that the canonical inflammasome mediates the cleavage of the master erythroid transcription factor GATA1 in hematopoietic stem and progenitor cells (HSPCs). We report here that genetic inhibition of Nlrp1 resulted in reduced number of neutrophils and increased erythrocyte counts in zebrafish larvae. We also found that the NLRP1 inflammasome in human cells was inhibited by LRRFIP1 and FLII, independently of DPP9, and both inhibitors regulated hematopoiesis. Mechanistically, erythroid differentiation resulted in ribosomal stress-induced activation of the ZAKα/P38 kinase axis which, in turn, phosphorylated and promoted the assembly of NLRP1 in both zebrafish and human. Finally, inhibition of Zaka with the FDA/EMA-approved drug Nilotinib alleviated neutrophilia in a zebrafish model of neutrophilic inflammation and promoted erythroid differentiation and GATA1 accumulation in K562 cells. In conclusion, our results reveal that the NLRP1 inflammasome regulates hematopoiesis and pave the way to develop novel therapeutic strategies for the treatment of hematopoietic alterations associated with chronic inflammatory and rare diseases.

19.
Dev Comp Immunol ; 132: 104404, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341794

RESUMEN

Chronic diseases and hematopoietic disorders are associated with dysregulation of the inflammasome. Our group has recently reported the relevance of the inflammasome in the differentiation of hematopoietic stem and progenitor cells. However, the impact of the inflammasome of myeloid cells in the regulation of hematopoiesis is largely unknown. In this study, we used the unique advantages of the zebrafish model to demonstrate that genetic inhibition of macrophage inflammasome resulted in increased number of macrophages in larvae with skin inflammation without affecting erythrocyte and neutrophil counts. Similarly, the inhibition of the neutrophil inflammasome by the same strategy resulted in increased number of neutrophils in larvae with skin inflammation but did not affect erythrocytes and macrophages. Consistently, hyperactivation of the inflammasome in neutrophils in this model promoted neutrophil death, which was recovered by pharmacological inhibition of Gasdermin E. We conclude that the myeloid inflammasome autonomously regulates pyroptotic cell death in chronic inflammation through a Gasdermin E-dependent pathway in zebrafish.


Asunto(s)
Piroptosis , Pez Cebra , Animales , Enfermedad Crónica , Inflamasomas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Pez Cebra/metabolismo
20.
Sci Adv ; 8(37): eabo0732, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112681

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic turned the whole world upside down in a short time. One of the main challenges faced has been to understand COVID-19-associated life-threatening hyperinflammation, the so-called cytokine storm syndrome (CSS). We report here the proinflammatory role of Spike (S) proteins from different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern in zebrafish. We found that wild-type/Wuhan variant S1 (S1WT) promoted neutrophil and macrophage recruitment, local and systemic hyperinflammation, emergency myelopoiesis, and hemorrhages. In addition, S1γ was more proinflammatory S1δ was less proinflammatory than S1WT, and, notably, S1ß promoted delayed and long-lasting inflammation. Pharmacological inhibition of the canonical inflammasome alleviated S1-induced inflammation and emergency myelopoiesis. In contrast, genetic inhibition of angiotensin-converting enzyme 2 strengthened the proinflammatory activity of S1, and angiotensin (1-7) fully rescued S1-induced hyperinflammation and hemorrhages. These results shed light into the mechanisms orchestrating the COVID-19-associated CSS and the host immune response to different SARS-CoV-2 S protein variants.


Asunto(s)
COVID-19 , Inflamación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/genética , Animales , Humanos , Inflamasomas , Inflamación/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA