Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 70(5): 961-974, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35084774

RESUMEN

Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.


Asunto(s)
Ácido Glutámico , Receptores de N-Metil-D-Aspartato , Animales , Astrocitos , Ratas , Ratas Sprague-Dawley , Sinapsis
2.
J Neurochem ; 156(1): 48-58, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32418206

RESUMEN

Brain function relies on vesicular release of neurotransmitters at chemical synapses. The release probability depends on action potential-evoked presynaptic Ca2+ entry, but also on the resting Ca2+ level. Whether these basic aspects of presynaptic calcium homeostasis show any consistent trend along the axonal path, and how they are controlled by local network activity, remains poorly understood. Here, we take advantage of the recently advanced FLIM-based method to monitor presynaptic Ca2+ with nanomolar sensitivity. We find that, in cortical pyramidal neurons, action potential-evoked calcium entry (range 10-300 nM), but not the resting Ca2+ level (range 10-100 nM), tends to increase with higher order of axonal branches. Blocking astroglial glutamate uptake reduces evoked Ca2+ entry but has little effect on resting Ca2+ whereas both appear boosted by the constitutive activation of group 1/2 metabotropic glutamate receptors. We find no consistent effect of transient somatic depolarization or hyperpolarization on presynaptic Ca2+ entry or its basal level. The results unveil some key aspects of presynaptic machinery in cortical circuits, shedding light on basic principles of synaptic connectivity in the brain.


Asunto(s)
Calcio/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Transmisión Sináptica/fisiología , Animales , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo
3.
Glia ; 65(3): 447-459, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27896839

RESUMEN

Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole-cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+ ] measurements, we also employed life-time imaging of the Ca2+ indicator Oregon Green BAPTA-1. We found that dopamine triggered a dose-dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below-baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine-induced [Ca2+ ] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher-threshold dopamine-induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter-dopamine-could either elevate or decrease astrocyte [Ca2+ ] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+ ] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447-459.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Calcio/metabolismo , Dopamina/farmacología , Hipocampo/citología , Sinapsis/efectos de los fármacos , Animales , Astrocitos/citología , Dopamina/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Técnicas In Vitro , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Masculino , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neurotransmisores/farmacología , Imagen Óptica , Técnicas de Placa-Clamp , Ratas
4.
Curr Biol ; 33(7): 1249-1264.e7, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36921605

RESUMEN

Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.


Asunto(s)
Hipocampo , Transmisión Sináptica , Transmisión Sináptica/fisiología , Neuronas , Interneuronas/fisiología , Ácido gamma-Aminobutírico
5.
Brain Res Bull ; 136: 37-43, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28890284

RESUMEN

Astrocytes are involved in maintenance of synaptic microenvironment by glutamate uptake and K+ clearance. These processes are associated with net charge transfer across the membrane and therefore can be recorded as glutamate transporter (IGluT) and K+ (IK) currents. It has been previously shown that the blockade of IK with BaCl2 enhances the IGluT. Here we show that activity-dependent facilitation (5 stimuli at 50Hz) of IGluT was not significantly different in BaCl2 compared to facilitation of IGluT isolated by post-hoc subtraction of IK. Nevertheless, BaCl2 abolished the activity-dependent prolongation of τdecay, which was observed for IGluT isolated by post-hoc subtraction of IK. This finding suggests that activity-dependent accumulation of extracellular K+ ([K+]o) causes astrocytic depolarization, which is responsible for the increase in τdecay of IGluT. The blockade of inward rectifying K+ channels (Kir) with BaCl2 makes astrocytic membrane potential insensitive to [K+]o elevation and thus abolishes this increase. Blockade of IGluT with glutamate transporter blocker, DL-threo-ß-benzyloxyaspartic acid (TBOA) did not significantly affect the amplitude of IK but decreased its τdecay. However, activity dependent facilitations of both amplitude and τdecay of IK were larger in TBOA, than in the control conditions. We suggest that activity-dependent accumulation of extracellular glutamate can enhance release of K+. Thus activity-dependent changes in [K+]o can affect glutamate dwell-time in the synaptic cleft, and vice versa, extracellular glutamate accumulation can affect [K+]o time-course. Our finding is important for understanding of the astrocytic mechanisms in glutamate excitotoxicity and in diseases related to disruption of K+ homeostasis (e.g. stroke, migraine, and epilepsy).


Asunto(s)
Astrocitos/metabolismo , Hipocampo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Potasio/metabolismo , Animales , Astrocitos/efectos de los fármacos , Cationes Monovalentes/metabolismo , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
6.
Brain Res Bull ; 136: 85-90, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011193

RESUMEN

The pathogenesis of Alzheimer's disease (AD) is thought to involve acute neurotoxic effects exerted by oligomeric forms of amyloid-ß 1-42 (Aß). Application of Aß oligomers in physiological concentrations have been shown to transiently elevate internal Ca2+ in cultured astroglia. While the cellular machinery involved has been extensively explored, to what degree this important signalling cascade occurs in organised brain tissue has remained unclear. Here we adapted two-photon excitation microscopy and calibrated time-resolved imaging (FLIM), coupled with patch-clamp electrophysiology, to monitor Ca2+ concentration ([Ca2+]) inside individual astrocytes and principal neurons in acute brain slices. Inside the slice tissue local micro-ejection of Aß in sub-micromolar concentrations triggered prominent [Ca2+] elevations in an adjacent astrocyte translated as an approximately two-fold increase (averaged over ∼5min) in basal [Ca2+]. This elevation did not spread to neighbouring cells and appeared comparable in amplitude with commonly documented spontaneous [Ca2+] rises in astroglia. Principal nerve cells (pyramidal neurons) also showed Ca2+ sensitivity, albeit to a lesser degree. These observations shed light on the extent and dynamics of the acute physiological effects of Aß on brain cells in situ, in the context of AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Calcio/metabolismo , Hipocampo/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/administración & dosificación , Animales , Astrocitos/efectos de los fármacos , Cationes Bivalentes/metabolismo , Fármacos del Sistema Nervioso Central/administración & dosificación , Hipocampo/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microscopía Fluorescente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fragmentos de Péptidos/administración & dosificación , Ratas Sprague-Dawley , Análisis de la Célula Individual , Técnicas de Cultivo de Tejidos
7.
Cell Calcium ; 64: 102-108, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28465084

RESUMEN

Brain function relies in large part on Ca2+-dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca2+ dynamics and transmitter release in an intact brain at the level of individual synapses.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Ácido Glutámico/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Potenciales de Acción/fisiología , Compuestos de Anilina/metabolismo , Animales , Axones/metabolismo , Fluoresceínas/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA